Exchange force
Encyclopedia
In physics
Physics
Physics is a natural science that involves the study of matter and its motion through spacetime, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic...

 the term exchange force has been used to describe two distinct concepts which should not be confused.

Exchange of force carriers in particle physics

The preferred meaning of exchange force is in particle physics
Particle physics
Particle physics is a branch of physics that studies the existence and interactions of particles that are the constituents of what is usually referred to as matter or radiation. In current understanding, particles are excitations of quantum fields and interact following their dynamics...

, where it denotes a force produced by the exchange of force carrier
Force carrier
In particle physics, quantum field theories such as the Standard Model describe nature in terms of fields. Each field has a complementary description as the set of particles of a particular type...

 particles, such as the electromagnetic force produced by the exchange of photon
Photon
In physics, a photon is an elementary particle, the quantum of the electromagnetic interaction and the basic unit of light and all other forms of electromagnetic radiation. It is also the force carrier for the electromagnetic force...

s between electron
Electron
The electron is a subatomic particle with a negative elementary electric charge. It has no known components or substructure; in other words, it is generally thought to be an elementary particle. An electron has a mass that is approximately 1/1836 that of the proton...

s and the strong force produced by the exchange of gluons between quarks. The idea of an exchange force implies a continuous exchange of particles which accompany the interaction and transmit the force, a process that receives its operational justification through the Heisenberg uncertainty principle.

History

One of the earliest uses of the term interaction was in a discussion by Niels Bohr
Niels Bohr
Niels Henrik David Bohr was a Danish physicist who made foundational contributions to understanding atomic structure and quantum mechanics, for which he received the Nobel Prize in Physics in 1922. Bohr mentored and collaborated with many of the top physicists of the century at his institute in...

 in 1913 of the interaction between the negative electron
Electron
The electron is a subatomic particle with a negative elementary electric charge. It has no known components or substructure; in other words, it is generally thought to be an elementary particle. An electron has a mass that is approximately 1/1836 that of the proton...

 and the positive nucleus
Atomic nucleus
The nucleus is the very dense region consisting of protons and neutrons at the center of an atom. It was discovered in 1911, as a result of Ernest Rutherford's interpretation of the famous 1909 Rutherford experiment performed by Hans Geiger and Ernest Marsden, under the direction of Rutherford. The...

. Exchange forces were introduced by Werner Heisenberg
Werner Heisenberg
Werner Karl Heisenberg was a German theoretical physicist who made foundational contributions to quantum mechanics and is best known for asserting the uncertainty principle of quantum theory...

 (1932) and Ettore Majorana
Ettore Majorana
Ettore Majorana was an Italian theoretical physicist who began work on neutrino masses. He disappeared suddenly in mysterious circumstances. He is noted for the eponymous Majorana equation and for Majorana fermions.-Gifted in mathematics:Majorana was born in Catania, Sicily...

 (1933) in order to account for the saturation of binding energy
Binding energy
Binding energy is the mechanical energy required to disassemble a whole into separate parts. A bound system typically has a lower potential energy than its constituent parts; this is what keeps the system together—often this means that energy is released upon the creation of a bound state...

 and of nuclear density
Nuclear density
Nuclear density is the density of the nucleus of an atom, averaging about 4×1017 kg/m³. The descriptive term nuclear density is also applied to situations where similarly high densities occur, such as within neutron stars....

. This was done in analogy to the quantum mechanical theory of covalent bond
Covalent bond
A covalent bond is a form of chemical bonding that is characterized by the sharing of pairs of electrons between atoms. The stable balance of attractive and repulsive forces between atoms when they share electrons is known as covalent bonding....

s, such as exist between two hydrogen atoms in the hydrogen molecule wherein the chemical force is attractive if the wave function is symmetric under exchange of coordinates of the electrons and is repulsive if the wave function is anti-symmetric in this respect.

Exchange interaction and quantum state symmetry

As another, entirely distinct, meaning of exchange force, it is sometimes used as a synonym for the exchange interaction
Exchange interaction
In physics, the exchange interaction is a quantum mechanical effect without classical analog which increases or decreases the expectation value of the energy or distance between two or more identical particles when their wave functions overlap...

, between electrons which arises from a combination of the identity of particles
Identical particles
Identical particles, or indistinguishable particles, are particles that cannot be distinguished from one another, even in principle. Species of identical particles include elementary particles such as electrons, and, with some clauses, composite particles such as atoms and molecules.There are two...

, exchange symmetry
Exchange symmetry
Exchange symmetry is derived from a fundamental postulate of quantum statistics, which states that no observable physical quantity should change after exchanging two identical particles...

, and the electrostatic force.

To illustrate the concept of exchange interaction, any two electron
Electron
The electron is a subatomic particle with a negative elementary electric charge. It has no known components or substructure; in other words, it is generally thought to be an elementary particle. An electron has a mass that is approximately 1/1836 that of the proton...

s, for example, in the universe are considered indistinguishable
Identical particles
Identical particles, or indistinguishable particles, are particles that cannot be distinguished from one another, even in principle. Species of identical particles include elementary particles such as electrons, and, with some clauses, composite particles such as atoms and molecules.There are two...

 particles, and so according to quantum mechanics in 3 dimensions, every particle must behave as a boson
Boson
In particle physics, bosons are subatomic particles that obey Bose–Einstein statistics. Several bosons can occupy the same quantum state. The word boson derives from the name of Satyendra Nath Bose....

 or a fermion. In the former case, two (or more) particles can occupy the same quantum state and this results in a lack of exchange interaction between them; in the latter case, the particles can not occupy the same state according to the Pauli exclusion principle
Pauli exclusion principle
The Pauli exclusion principle is the quantum mechanical principle that no two identical fermions may occupy the same quantum state simultaneously. A more rigorous statement is that the total wave function for two identical fermions is anti-symmetric with respect to exchange of the particles...

. From Quantum field theory
Quantum field theory
Quantum field theory provides a theoretical framework for constructing quantum mechanical models of systems classically parametrized by an infinite number of dynamical degrees of freedom, that is, fields and many-body systems. It is the natural and quantitative language of particle physics and...

, the spin-statistics theorem
Spin-statistics theorem
In quantum mechanics, the spin-statistics theorem relates the spin of a particle to the particle statistics it obeys. The spin of a particle is its intrinsic angular momentum...

 demands that all particles with half-integer
Half-integer
In mathematics, a half-integer is a number of the formn + 1/2,where n is an integer. For example,are all half-integers. Note that a half of an integer is not always a half-integer: half of an even integer is an integer but not a half-integer...

 spin
Spin (physics)
In quantum mechanics and particle physics, spin is a fundamental characteristic property of elementary particles, composite particles , and atomic nuclei.It is worth noting that the intrinsic property of subatomic particles called spin and discussed in this article, is related in some small ways,...

 behave as fermions and all particles with integer
Integer
The integers are formed by the natural numbers together with the negatives of the non-zero natural numbers .They are known as Positive and Negative Integers respectively...

 spin behave as bosons. Thus, it so happens that all electrons are fermions, since they have spin 1/2.

As a mathematical consequence, fermions exhibit strong repulsion when their wave functions overlap, but bosons do not. This repulsion is what the exchange interaction models. Fermi repulsion results in "stiffness" of fermions. That is why atomic matter, is "stiff" or "rigid" to touch. Where wave functions of electrons overlap, Pauli repulsion takes place. The same is true for protons and neutrons where due to their larger mass, the rigidity of baryons is much larger than that of electrons.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK