Optical coherence tomography
Encyclopedia
Optical coherence tomography (OCT) is an optical signal acquisition and processing method. It captures micrometer
Micrometer
A micrometer , sometimes known as a micrometer screw gauge, is a device incorporating a calibrated screw used widely for precise measurement of small distances in mechanical engineering and machining as well as most mechanical trades, along with other metrological instruments such as dial, vernier,...

-resolution, three-dimensional images from within optical scattering
Scattering (optics)
Optical scattering deals with the scattering, absorption, and extinction of electromagnetic radiation by particles, molecules and surfaces. Both single scattering and multiple scattering are considered in this category....

 media (e.g., biological tissue). Optical coherence tomography is an interferometric
Interferometry
Interferometry refers to a family of techniques in which electromagnetic waves are superimposed in order to extract information about the waves. An instrument used to interfere waves is called an interferometer. Interferometry is an important investigative technique in the fields of astronomy,...

 technique, typically employing near-infrared light. The use of relatively long wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

 light allows it to penetrate into the scattering medium. Confocal microscopy
Confocal microscopy
Confocal microscopy is an optical imaging technique used to increase optical resolution and contrast of a micrograph by using point illumination and a spatial pinhole to eliminate out-of-focus light in specimens that are thicker than the focal plane. It enables the reconstruction of...

, another similar technique, typically penetrates less deeply into the sample.

Depending on the properties of the light source (superluminescent diodes
Superluminescent diode
A superluminescent diode is an edge-emitting semiconductor light source based on superluminescence. It combines the high power and brightness of laser diodes with the low coherence of conventional light-emitting diodes. Its emission band is 5–100 nm wide.- History :In 1986 Dr. Gerard A...

, ultrashort pulsed lasers
Ultrashort pulse laser
An ultrashort pulse laser is a laser that emits ultrashort pulses of light, generally of the order of femtoseconds to ten picoseconds. Thus they are also known as ultrafast lasers. But "ultrafast laser" is a misnomer, since the speed of light is constant in a given medium.Common current ultrashort...

 and supercontinuum
Supercontinuum
In optics, a supercontinuum is formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam. The result is a smooth spectral continuum...

 lasers have been employed), optical coherence tomography has achieved sub-micrometer
Micrometer
A micrometer , sometimes known as a micrometer screw gauge, is a device incorporating a calibrated screw used widely for precise measurement of small distances in mechanical engineering and machining as well as most mechanical trades, along with other metrological instruments such as dial, vernier,...

 resolution (with very wide-spectrum sources emitting over a ~100 nm wavelength range).

Optical coherence tomography is one of a class of optical tomographic
Optical tomography
Optical tomography is a form of computed tomography that creates a digital volumetric model of an object by reconstructing images made from light transmitted and scattered through an object...

 techniques. A relatively recent implementation of optical coherence tomography, frequency-domain optical coherence tomography, provides advantages in signal-to-noise ratio
Signal-to-noise ratio
Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. It is defined as the ratio of signal power to the noise power. A ratio higher than 1:1 indicates more signal than noise...

, permitting faster signal acquisition. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in ophthalmology
Ophthalmology
Ophthalmology is the branch of medicine that deals with the anatomy, physiology and diseases of the eye. An ophthalmologist is a specialist in medical and surgical eye problems...

 where it can be used to obtain detailed images from within the retina. Recently it has also begun to be used in interventional cardiology
Cardiology
Cardiology is a medical specialty dealing with disorders of the heart . The field includes diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular heart disease and electrophysiology...

 to help diagnose coronary artery disease

Introduction

Starting from white-light interferometry for in vivo ocular eye measurements imaging of biological tissue, especially of the human eye, was investigated by multiple groups worldwide. A first two-dimensional in vivo depiction of a human eye fundus along a horizontal meridian based on white light interferometric depth scans was presented at the ICO-15 SAT conference in 1990. Further developed in 1990 by Naohiro Tanno, then a professor at Yamagata University, and in particular since 1991 by Huang et al., optical coherence tomography (OCT) with micrometer resolution and cross-sectional imaging capabilities has become a prominent biomedical tissue-imaging technique; it is particularly suited to ophthalmic applications and other tissue imaging requiring micrometer resolution and millimeter penetration depth. First in vivo OCT images – displaying retinal structures – were published in 1993.
OCT has also been used for various art conservation projects, where it is used to analyze different layers in a painting. OCT has critical advantages over other medical imaging
Medical imaging
Medical imaging is the technique and process used to create images of the human body for clinical purposes or medical science...

 systems. Medical ultrasonography
Medical ultrasonography
Diagnostic sonography is an ultrasound-based diagnostic imaging technique used for visualizing subcutaneous body structures including tendons, muscles, joints, vessels and internal organs for possible pathology or lesions...

, magnetic resonance imaging
Magnetic resonance imaging
Magnetic resonance imaging , nuclear magnetic resonance imaging , or magnetic resonance tomography is a medical imaging technique used in radiology to visualize detailed internal structures...

 (MRI) and confocal microscopy
Confocal microscopy
Confocal microscopy is an optical imaging technique used to increase optical resolution and contrast of a micrograph by using point illumination and a spatial pinhole to eliminate out-of-focus light in specimens that are thicker than the focal plane. It enables the reconstruction of...

 are not suited to morphological tissue imaging: the first two have poor resolution; the last lacks millimeter penetration depth.

OCT bases itself upon low coherence interferometry. In conventional interferometry with long coherence length (laser interferometry), interference of light occurs over a distance of meters. In OCT, this interference is shortened to a distance of micrometers, thanks to the use of broadband light sources (sources that can emit light over a broad range of frequencies). Light with broad bandwidths can be generated by using superluminescent diode
Superluminescent diode
A superluminescent diode is an edge-emitting semiconductor light source based on superluminescence. It combines the high power and brightness of laser diodes with the low coherence of conventional light-emitting diodes. Its emission band is 5–100 nm wide.- History :In 1986 Dr. Gerard A...

s (superbright LEDs) or lasers with extremely short pulses (femtosecond lasers). White light is also a broadband source with lower power.

Light in an OCT system is broken into two arms—a sample arm (containing the item of interest) and a reference arm (usually a mirror). The combination of reflected light from the sample arm and reference light from the reference arm gives rise to an interference pattern, but only if light from both arms have travelled the "same" optical distance ("same" meaning a difference of less than a coherence length). By scanning the mirror in the reference arm, a reflectivity profile of the sample can be obtained (this is time domain OCT). Areas of the sample that reflect back a lot of light will create greater interference than areas that don't. Any light that is outside the short coherence length will not interfere. This reflectivity profile, called an A-scan, contains information about the spatial dimensions and location of structures within the item of interest. A cross-sectional tomograph (B-scan) may be achieved by laterally combining a series of these axial depth scans (A-scan). En face imaging (C-scan) at an acquired depth is possible depending on the imaging engine used.

Laypersons explanation

Optical Coherence Tomography, or ‘OCT’, is a technique for obtaining sub-surface images of translucent or opaque materials at a resolution equivalent to a low-power microscope. It is effectively ‘optical ultrasound’, imaging reflections from within tissue to provide cross-sectional images.

OCT is attracting interest among the medical community, because it provides tissue morphology imagery at much higher resolution (better than 10 µm) than other imaging modalities such as MRI or ultrasound.

The key benefits of OCT are:
  • Live sub-surface images at near-microscopic resolution
  • Instant, direct imaging of tissue morphology
  • No preparation of the sample or subject
  • No ionizing radiation


OCT delivers high resolution because it is based on light, rather than sound or radio frequency. An optical beam is directed at the tissue, and a small portion of this light that reflects from sub-surface features is collected. Note that most light is not reflected but, rather, scatters. The scattered light has lost its original direction and does not contribute to forming an image but rather contributes to glare. The glare of scattered light causes optically scattering materials (e.g., biological tissue, candle wax, or certain plastics) to appear opaque or translucent even while they do not strongly absorb light (as can be ascertained through a simple experiment — e.g., shining a red laser pointer through one's finger). Using the OCT technique, scattered light can be filtered out, completely removing the glare. Even the very tiny proportion of reflected light that is not scattered can then be detected and used to form the image in, e.g., a scanning OCT system employing a microscope.

The physics principle allowing the filtering of scattered light is optical coherence. Only the reflected (non-scattered) light is coherent (i.e., retains the optical phase that causes light rays to propagate in one or another direction). In the OCT instrument, an optical interferometer is used in such a manner as to detect only coherent light. Essentially, the interferometer strips off scattered light from the reflected light needed to generate an image. In the process depth and intensity of light reflected from a sub-surface feature is obtained. A three-dimensional image can be built up by scanning, as in a sonar or radar system.

Within the range of noninvasive three-dimensional imaging techniques that have been introduced to the medical research community, OCT as an echo technique is similar to ultrasound imaging. Other medical imaging techniques such as computerized axial tomography, magnetic resonance imaging, or positron emission tomography do not utilize the echo-location principle.

The technique is limited to imaging 1 to 2 mm below the surface in biological tissue, because at greater depths the proportion of light that escapes without scattering is too small to be detected. No special preparation of a biological specimen is required, and images can be obtained ‘non-contact’ or through a transparent window or membrane. It is also important to note that the laser output from the instruments is low – eye-safe near-infra-red light is used – and no damage to the sample is therefore likely.

Theory

The principle OCT is white light or low coherence interferometry. The optical setup typically consists of an interferometer (Fig. 1, typically Michelson
Michelson interferometer
The Michelson interferometer is the most common configuration for optical interferometry and was invented by Albert Abraham Michelson. An interference pattern is produced by splitting a beam of light into two paths, bouncing the beams back and recombining them...

 type) with a low coherence, broad bandwidth light source. Light is split into and recombined from reference and sample arm, respectively.
>


>


Time domain OCT

In time domain OCT the pathlength of the reference arm is translated longitudinally in time. A property of low coherence interferometry is that interference, i.e. the series of dark and bright fringes, is only achieved when the path difference lies within the coherence length of the light source. This interference is called auto correlation in a symmetric interferometer (both arms have the same reflectivity), or cross-correlation in the common case. The envelope of this modulation changes as pathlength difference is varied, where the peak of the envelope corresponds to pathlength matching.

The interference of two partially coherent light beams can be expressed in terms of the source intensity, , as


where represents the interferometer beam splitting ratio, and is called the complex degree of coherence, i.e. the interference envelope and carrier dependent on reference arm scan or time delay , and whose recovery of interest in OCT. Due to the coherence gating effect of OCT the complex degree of coherence is represented as a Gaussian function expressed as


where represents the spectral width of the source in the optical frequency domain, and is the centre optical frequency of the source. In equation (2), the Gaussian envelope is amplitude modulated by an optical carrier. The peak of this envelope represents the location of sample under test microstructure, with an amplitude dependent on the reflectivity of the surface. The optical carrier is due to the Doppler effect
Doppler effect
The Doppler effect , named after Austrian physicist Christian Doppler who proposed it in 1842 in Prague, is the change in frequency of a wave for an observer moving relative to the source of the wave. It is commonly heard when a vehicle sounding a siren or horn approaches, passes, and recedes from...

 resulting from scanning one arm of the interferometer, and the frequency of this modulation is controlled by the speed of scanning. Therefore translating one arm of the interferometer has two functions; depth scanning and a Doppler-shifted optical carrier are accomplished by pathlength variation. In OCT, the Doppler-shifted optical carrier has a frequency expressed as


where is the central optical frequency of the source, is the scanning velocity of the pathlength variation, and is the speed of light.

The axial and lateral resolutions of OCT are decoupled from one another; the former being an equivalent to the coherence length of the light source and the latter being a function of the optics. The coherence length of a source and hence the axial resolution of OCT is defined as

Frequency domain OCT (FD-OCT)

In frequency domain OCT the broadband interference is acquired with spectrally separated detectors (either by encoding the optical frequency in time with a spectrally scanning source or with a dispersive detector, like a grating and a linear detector array). Due to the Fourier
Fourier
Fourier most commonly refers to Joseph Fourier , French mathematician and physicist, or the mathematics, physics, and engineering terms named in his honor for his work on the concepts underlying them:In mathematics:...

 relation (Wiener-Khintchine theorem between the auto correlation and the spectral power density) the depth scan can be immediately calculated by a Fourier-transform from the acquired spectra, without movement of the reference arm. This feature improves imaging speed dramatically, while the reduced losses during a single scan improve the signal to noise proportional to the number of detection elements. The parallel detection at multiple wavelength ranges limits the scanning range, while the full spectral bandwidth sets the axial resolution.

Spatially encoded frequency domain OCT (spectral domain or Fourier domain OCT)

SEFD-OCT extracts spectral information by distributing different optical frequencies onto a detector stripe (line-array CCD or CMOS) via a dispersive element (see Fig. 4). Thereby the information of the full depth scan can be acquired within a single exposure. However, the large signal to noise advantage of FD-OCT is reduced due the lower dynamic range of stripe detectors in respect to single photosensitive diodes, resulting in an SNR (signal to noise ratio) advantage of ~10 dB
Decibel
The decibel is a logarithmic unit that indicates the ratio of a physical quantity relative to a specified or implied reference level. A ratio in decibels is ten times the logarithm to base 10 of the ratio of two power quantities...

 at much higher speeds. This is not much of a problem when working at 1300 nm, however, since dynamic range is not a serious problem at this wavelength range.

The drawbacks of this technology are found in a strong fall-off of the SNR, which is proportional to the distance from the zero delay and a sinc-type reduction of the depth dependent sensitivity because of limited detection linewidth. (One pixel detects a quasi-rectangular portion of an optical frequency range instead of a single frequency, the Fourier-transform leads to the sinc(z) behavior). Additionally the dispersive elements in the spectroscopic detector usually do not distribute the light equally spaced in frequency on the detector, but mostly have an inverse dependence. Therefore the signal has to be resampled before processing, which can not take care of the difference in local (pixelwise) bandwidth, which results in further reduction of the signal quality. However, the fall-off is not a serious problem with the development of new generation CCD or photodiode array with a larger number of pixels.

Synthetic array heterodyne detection
Optical heterodyne detection
Optical heterodyne detection is an important special case of heterodyne detection. In heterodyne detection, a signal of interest at some frequency is non-linearly mixed with a reference "local oscillator" that is set at a close-by frequency...

 offers another approach to this problem without the need for high dispersion.

Time encoded frequency domain OCT (also swept source OCT)

TEFD-OCT tries to combine some of the advantages of standard TD and SEFD-OCT. Here the spectral components are not encoded by spatial separation, but they are encoded in time. The spectrum either filtered or generated in single successive frequency steps and reconstructed before Fourier-transformation. By accommodation of a frequency scanning light source (i.e. frequency scanning laser) the optical setup (see Fig. 5) becomes simpler than SEFD, but the problem of scanning is essentially translated from the TD-OCT reference-arm into the TEFD-OCT light source.
Here the advantage lies in the proven high SNR detection technology, while swept laser sources achieve very small instantaneous bandwidths (=linewidth) at very high frequencies (20–200 kHz). Drawbacks are the nonlinearities in the wavelength, especially at high scanning frequencies. The broadening of the linewidth at high frequencies and a high sensitivity to movements of the scanning geometry or the sample (below the range of nanometers within successive frequency steps).

Scanning schemes

Focusing the light beam to a point on the surface of the sample under test, and recombining the reflected light with the reference will yield an interferogram with sample information corresponding to a single A-scan (Z axis only). Scanning of the sample can be accomplished by either scanning the light on the sample, or by moving the sample under test. A linear scan will yield a two-dimensional data set corresponding to a cross-sectional image (X-Z axes scan), whereas an area scan achieves a three-dimensional data set corresponding to a volumetric image (X-Y-Z axes scan), also called full-field OCT.

Single point (confocal) OCT

Systems based on single point, or flying-spot time domain OCT, must scan the sample in two lateral dimensions and reconstruct a three-dimensional image using depth information obtained by coherence-gating through an axially scanning reference arm (Fig. 2). Two-dimensional lateral scanning has been electromechanically implemented by moving the sample using a translation stage, and using a novel micro-electro-mechanical system scanner.

Parallel (or full field) OCT

Parallel OCT using a charge-coupled device
Charge-coupled device
A charge-coupled device is a device for the movement of electrical charge, usually from within the device to an area where the charge can be manipulated, for example conversion into a digital value. This is achieved by "shifting" the signals between stages within the device one at a time...

 (CCD) camera has been used in which the sample is full-field illuminated and en face imaged with the CCD, hence eliminating the electromechanical lateral scan. By stepping the reference mirror and recording successive en face images a three-dimensional representation can be reconstructed. Three-dimensional OCT using a CCD camera was demonstrated in a phase-stepped technique, using geometric phase-shifting with a Linnik interferometer
Linnik interferometer
A Linnik interferometer is a two-beam interferometer used in microscopy and surface contour measurements or topography. The basic configuration is the same as a Michelson interferometer. What distinguishes the Linnik configuration is the use of measurement optics in the reference arm, which...

, utilising a pair of CCDs and heterodyne detection, and in a Linnik interferometer with an oscillating reference mirror and axial translation stage. Central to the CCD approach is the necessity for either very fast CCDs or carrier generation separate to the stepping reference mirror to track the high frequency OCT carrier.

Smart detector array for parallel TD-OCT

A two-dimensional smart detector array, fabricated using a 2 µm complementary metal-oxide-semiconductor
CMOS
Complementary metal–oxide–semiconductor is a technology for constructing integrated circuits. CMOS technology is used in microprocessors, microcontrollers, static RAM, and other digital logic circuits...

 (CMOS) process, was used to demonstrate full-field OCT. Featuring an uncomplicated optical setup (Fig. 3), each pixel of the 58x58 pixel smart detector array acted as an individual photodiode and included its own hardware demodulation circuitry.

Selected applications

Optical coherence tomography is an established medical imaging
Medical imaging
Medical imaging is the technique and process used to create images of the human body for clinical purposes or medical science...

 technique. It is widely used, for example, to obtain high-resolution images of the retina
Retina
The vertebrate retina is a light-sensitive tissue lining the inner surface of the eye. The optics of the eye create an image of the visual world on the retina, which serves much the same function as the film in a camera. Light striking the retina initiates a cascade of chemical and electrical...

 and the anterior segment of the eye
Human eye
The human eye is an organ which reacts to light for several purposes. As a conscious sense organ, the eye allows vision. Rod and cone cells in the retina allow conscious light perception and vision including color differentiation and the perception of depth...

, which can, for example, provide a straightforward method of assessing axonal integrity in multiple sclerosis
Multiple sclerosis
Multiple sclerosis is an inflammatory disease in which the fatty myelin sheaths around the axons of the brain and spinal cord are damaged, leading to demyelination and scarring as well as a broad spectrum of signs and symptoms...

. Researchers are also seeking to develop a method that uses frequency domain OCT to image coronary arteries in order to detect vulnerable lipid-rich plaques.

Optical coherence tomography is also applicable and increasingly used in industrial applications
Industrial engineering
Industrial engineering is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of integrated systems of people, money, knowledge, information, equipment, energy, materials, analysis...

, such as Non Destructive Testing(NDT), material thickness measurements, and in particular thin silicon wafers,
and compound semiconductor wafers thickness measurements,, surface roughness characterization, surface and cross-section imaging,
, and volume loss measurements. OCT systems with feedback can be used to control manufacturing processes.
With high speed data acquisition, and sub-micron resolution, OCT is adaptable to perform both inline and off-line. Fiber-based OCT systems are particularly adaptable to industrial environments. These can access and scan interiors of hard-to-reach spaces
, and are able to operate in hostile environments - whether radioactive, cryogenic or very hot.

See also

  • Interferometry
    Interferometry
    Interferometry refers to a family of techniques in which electromagnetic waves are superimposed in order to extract information about the waves. An instrument used to interfere waves is called an interferometer. Interferometry is an important investigative technique in the fields of astronomy,...

  • Tomography
    Tomography
    Tomography refers to imaging by sections or sectioning, through the use of any kind of penetrating wave. A device used in tomography is called a tomograph, while the image produced is a tomogram. The method is used in radiology, archaeology, biology, geophysics, oceanography, materials science,...

  • Angle-resolved low-coherence interferometry
    Angle-resolved low-coherence interferometry
    For the electrical device, see ALCIAngle-resolved low-coherence interferometry is an emerging biomedical imaging technology which uses the properties of scattered light to measure the average size of cell structures, including cell nuclei...

  • Ballistic photon
    Ballistic photon
    Ballistic photons are the light photons that travel through a scattering medium in a straight line. Also known as ballistic light. If laser pulses are sent through a turbid medium such as fog or body tissue, most of the photons are either randomly scattered or absorbed. However, across short...

  • Optical heterodyne detection
    Optical heterodyne detection
    Optical heterodyne detection is an important special case of heterodyne detection. In heterodyne detection, a signal of interest at some frequency is non-linearly mixed with a reference "local oscillator" that is set at a close-by frequency...

  • Novacam Technologies
    Novacam Technologies
    Novacam Technologies Inc. specializes in designing and manufacturing advanced metrology and imaging systems for industrial and bio-medical applications. Novacam’s fiber-based optical profilometers and Optical Coherence Tomography systems are based on low coherence interferometry...


OFDI is used to image the plaques in the artery based on bifringence property of the tissues.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK