Nanotoxicology
Encyclopedia
Nanotoxicology is the study of the toxicity
Toxicity
Toxicity is the degree to which a substance can damage a living or non-living organisms. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a substructure of the organism, such as a cell or an organ , such as the liver...

 of nanomaterials
Nanotechnology
Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres...

. Because of quantum
Quantum
In physics, a quantum is the minimum amount of any physical entity involved in an interaction. Behind this, one finds the fundamental notion that a physical property may be "quantized," referred to as "the hypothesis of quantization". This means that the magnitude can take on only certain discrete...

 size effects and large surface area to volume ratio, nanomaterials have unique properties compared with their larger counterparts.

Nanotoxicology is a branch of bionanoscience which deals with the study and application of toxicity of nanomaterials. Nanomaterials, even when made of inert elements like gold, become highly active at nanometer
Nanometre
A nanometre is a unit of length in the metric system, equal to one billionth of a metre. The name combines the SI prefix nano- with the parent unit name metre .The nanometre is often used to express dimensions on the atomic scale: the diameter...

 dimensions. Nanotoxicological studies are intended to determine whether and to what extent these properties may pose a threat to the environment and to human beings. For instance, Diesel nanoparticles have been found to damage the cardiovascular system in a mouse model.

Human health and safety

Calls for tighter regulation of nanotechnology have arisen alongside a growing debate related to the human health and safety risks associated with nanotechnology. The Royal Society identifies the potential for nanoparticles to penetrate the skin, and recommends that the use of nanoparticles in cosmetics be conditional upon a favorable assessment by the relevant European Commission
European Commission
The European Commission is the executive body of the European Union. The body is responsible for proposing legislation, implementing decisions, upholding the Union's treaties and the general day-to-day running of the Union....

 safety advisory committee. Andrew Maynard also reports that ‘certain nanoparticles may move easily into sensitive lung tissues after inhalation, and cause damage that can lead to chronic breathing problems’.

Carbon nanotubes – characterized by their microscopic size and incredible tensile strength – are frequently likened to asbestos, due to their needle-like fiber shape. In a recent study that introduced carbon nanotubes into the abdominal cavity of mice, results demonstrated that long thin carbon nanotubes showed the same effects as long thin asbestos fibers
Asbestos fibers
Asbestos fibers are released from asbestos containing materials . Friable asbestos containing materials release fibers more readily than encapsulated asbestos containing materials.- Determining airborne asbestos fiber levels :...

, raising concerns that exposure to carbon nanotubes may lead to pleural abnormalities such as mesothelioma (cancer of the lining of the lungs caused by exposure to asbestos). Given these risks, effective and rigorous regulation has been called for to determine if, and under what circumstances, carbon nanotubes are manufactured, as well as ensuring their safe handling and disposal.

The Woodrow Wilson Centre’s Project on Emerging Technologies conclude that there is insufficient funding for human health and safety research, and as a result there is currently limited understanding of the human health and safety risks associated with nanotechnology. While the US National Nanotechnology Initiative reports that around four percent (about $40 million) is dedicated to risk related research and development, the Woodrow Wilson Centre estimate that only around $11 million is actually directed towards risk related research. They argued in 2007 that it would be necessary to increase funding to a minimum of $50 million in the following two years so as to fill the gaps in knowledge in these areas.

The potential for workplace exposure was highlighted by the 2004 Royal Society report which recommended a review of existing regulations to assess and control workplace exposure to nanoparticles and nanotubes. The report expressed particular concern for the inhalation of large quantities of nanoparticles by workers involved in the manufacturing process.

Stakeholders concerned by the lack of a regulatory framework to assess and control risks associated with the release of nanoparticles and nanotubes have drawn parallels with bovine spongiform encephalopathy
Bovine spongiform encephalopathy
Bovine spongiform encephalopathy , commonly known as mad-cow disease, is a fatal neurodegenerative disease in cattle that causes a spongy degeneration in the brain and spinal cord. BSE has a long incubation period, about 30 months to 8 years, usually affecting adult cattle at a peak age onset of...

 (‘mad cow’s disease'), thalidomide
Thalidomide
Thalidomide was introduced as a sedative drug in the late 1950s that was typically used to cure morning sickness. In 1961, it was withdrawn due to teratogenicity and neuropathy. There is now a growing clinical interest in thalidomide, and it is introduced as an immunomodulatory agent used...

, genetically modified food, nuclear energy, reproductive technologies, biotechnology, and asbestosis
Asbestosis
Asbestosis is a chronic inflammatory and fibrotic medical condition affecting the parenchymal tissue of the lungs caused by the inhalation and retention of asbestos fibers...

. In light of such concerns, the Canadian based ETC Group have called for a moratorium on nano-related research until comprehensive regulatory frameworks are developed that will ensure workplace safety.

California

In October 2008, the Department of Toxic Substances Control (DTSC), within the California Environmental Protection Agency, announced its intent to request information regarding analytical test methods, fate and transport in the environment, and other relevant information from manufacturers of carbon nanotubes. The term "manufacturers” includes persons and businesses that produce nanotubes in California, or import carbon nanotubes into California for sale. This information request is meant to identify information gaps and to develop further knowledge about the health and safety of carbon nanotubes.

DTSC excercises its authority under California Health and Safety Code, Chapter 699, sections 57018-57020. These sections were added as a result of the adoption of Assembly Bill AB 289 (2006). They are intended to make information on the fate and transport, detection and analysis, and other information on chemicals more available. The law places the responsibility to provide this information to the Department on those who manufacture or import the chemicals.
On January 22, 2009, a formal information request letter was sent to manufacturers who produce or import carbon nanotubes in California, or who may export carbon nanotubes into the State. This letter constitutes the first formal implementation of the authorities placed into statute by AB 289 (2006) and is directed to manufacturers of carbon nanotubes, both industry and academia within the State, and to manufacturers outside California who export carbon nanotubes to California. This request for information must be met by the manufacturers within one year.

On January 22, 2010, California manufacturers and importers of carbon nanotubes were required to submit their responses. On January 25, 2010, DTSC posted the responses received to date along with a list of companies that had failed to respond to the information request. On February 16, 2010, DTSC issued a follow-up letter to the companies that failed to submit a response.

DTSC is indicating interest in expanding the Specific Chemical Information Call-in to members of the brominated flame retardants, members of the methyl siloxane
Siloxane
A siloxane is any chemical compound composed of units of the form R2SiO, where R is a hydrogen atom or a hydrocarbon group. They belong to the wider class of organosilicon compounds....

s, and other nanometals and nanometal oxides such as vanadium oxide, aluminum oxide, silicon dioxide, titanium dioxide, zinc oxide, cerium oxide, nano platinum, nano silver, and nano zerovalent iron. DTSC is also planning to include quantum dots, ocean plastics, and nanoclay into the list of chemicals of interest.

Background

Nanotoxicology is a sub-specialty of particle toxicology. It addresses the toxicology of nanoparticles (particles <100 nm diameter) which appear to have toxicity effects that are unusual and not seen with larger particles. Nanoparticles can be divided into combustion-derived nanoparticles (like diesel soot), manufactured nanoparticles like carbon nanotubes and naturally occurring nanoparticles from volcanic eruptions, atmospheric chemistry etc. Typical nanoparticles that have been studied are titanium dioxide, alumina, zinc oxide, carbon black, and carbon nanotubes, and "nano-C60". Nanoparticles have much larger surface area to unit mass ratios which in some cases may lead to greater pro-inflammatory effects (in, for example, lung tissue). In addition, some nanoparticles seem to be able to translocate from their site of deposition to distant sites such as the blood and the brain. This has resulted in a sea-change in how particle toxicology is viewed- instead of being confined to the lungs, nanoparticle toxicologists study the brain, blood, liver, skin and gut. Nanotoxicology has revolutionised particle toxicology and rejuvenated it.

Reactive oxygen species

For some types of particles, the smaller they are, the greater their surface area to volume ratio and the higher their chemical reactivity and biological activity. The greater chemical reactivity of nanomaterials can result in increased production of reactive oxygen species
Reactive oxygen species
Reactive oxygen species are chemically reactive molecules containing oxygen. Examples include oxygen ions and peroxides. Reactive oxygen species are highly reactive due to the presence of unpaired valence shell electrons....

 (ROS), including free radicals.
ROS production has been found in a diverse range of nanomaterials including carbon fullerene
Fullerene
A fullerene is any molecule composed entirely of carbon, in the form of a hollow sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs, and they resemble the balls used in association football. Cylindrical ones are called carbon nanotubes or buckytubes...

s, carbon nanotube
Carbon nanotube
Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. Nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1, significantly larger than for any other material...

s and nanoparticle metal oxides. ROS and free radical production is one of the primary mechanisms of nanoparticle toxicity; it may result in oxidative stress, inflammation, and consequent damage to proteins, membranes and DNA.

Biodistribution

The extremely small size of nanomaterials also means that they much more readily gain entry into the human body
Human body
The human body is the entire structure of a human organism, and consists of a head, neck, torso, two arms and two legs.By the time the human reaches adulthood, the body consists of close to 100 trillion cells, the basic unit of life...

 than larger sized particles. How these nanoparticles behave inside the body is still a major question that needs to be resolved. The behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. In principle, a large number of particles could overload the body's phagocytes, cells that ingest and destroy foreign matter, thereby triggering stress reactions that lead to inflammation and weaken the body’s defense against other pathogens. In addition to questions about what happens if non-degradable or slowly degradable nanoparticles accumulate in bodily organs, another concern is their potential interaction or interference with biological processes inside the body. Because of their large surface area, nanoparticles will, on exposure to tissue and fluids, immediately adsorb
Adsorption
Adsorption is the adhesion of atoms, ions, biomolecules or molecules of gas, liquid, or dissolved solids to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. It differs from absorption, in which a fluid permeates or is dissolved by a liquid or solid...

 onto their surface some of the macromolecules they encounter. This may, for instance, affect the regulatory mechanisms of enzymes and other proteins.

Nanomaterials are able to cross biological membranes and access cells
Cell (biology)
The cell is the basic structural and functional unit of all known living organisms. It is the smallest unit of life that is classified as a living thing, and is often called the building block of life. The Alberts text discusses how the "cellular building blocks" move to shape developing embryos....

, tissues and organs that larger-sized particles normally cannot.
Nanomaterials can gain access to the blood stream via inhalation
or ingestion.
At least some nanomaterials can penetrate the skin;
even larger microparticles may penetrate skin when it is flexed.
Broken skin is an ineffective particle barrier,
suggesting that acne, eczema, shaving wounds or severe sunburn may accelerate skin uptake of nanomaterials. Then, once in the blood stream, nanomaterials can be transported around the body and be taken up by organs and tissues, including the brain, heart, liver, kidneys, spleen, bone marrow and nervous system.
Nanomaterials have proved toxic to human tissue and cell cultures, resulting in increased oxidative stress
Oxidative stress
Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage...

, inflammatory cytokine
Cytokine
Cytokines are small cell-signaling protein molecules that are secreted by the glial cells of the nervous system and by numerous cells of the immune system and are a category of signaling molecules used extensively in intercellular communication...

 production and cell death
Necrosis
Necrosis is the premature death of cells in living tissue. Necrosis is caused by factors external to the cell or tissue, such as infection, toxins, or trauma. This is in contrast to apoptosis, which is a naturally occurring cause of cellular death...

.
Unlike larger particles, nanomaterials may be taken up by cell mitochondria and the cell nucleus
Cell nucleus
In cell biology, the nucleus is a membrane-enclosed organelle found in eukaryotic cells. It contains most of the cell's genetic material, organized as multiple long linear DNA molecules in complex with a large variety of proteins, such as histones, to form chromosomes. The genes within these...

.
Studies demonstrate the potential for nanomaterials to cause DNA
DNA
Deoxyribonucleic acid is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms . The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in...

 mutation
Mutation
In molecular biology and genetics, mutations are changes in a genomic sequence: the DNA sequence of a cell's genome or the DNA or RNA sequence of a virus. They can be defined as sudden and spontaneous changes in the cell. Mutations are caused by radiation, viruses, transposons and mutagenic...

 and induce major structural damage to mitochondria, even resulting in cell death.

Nanotoxicity studies

Since there is no authority to regulate nanotech-based products, there are many products that could possibly be dangerous to humans. Scientific research has indicated the potential for some nanomaterials
Nanomaterials
Nanomaterials is a field that takes a materials science-based approach to nanotechnology. It studies materials with morphological features on the nanoscale, and especially those that have special properties stemming from their nanoscale dimensions...

 to be toxic to humans or the environment. In March 2004 tests conducted by environmental toxicologist Eva Oberdörster, Ph.D. working with Southern Methodist University
Southern Methodist University
Southern Methodist University is a private university in Dallas, Texas, United States. Founded in 1911 by the Methodist Episcopal Church, South, SMU operates campuses in Dallas, Plano, and Taos, New Mexico. SMU is owned by the South Central Jurisdiction of the United Methodist Church...

 in Texas, found extensive brain damage to fish exposed to fullerenes for a period of just 48 hours at a relatively moderate dose of 0.5 parts per million (commensurate with levels of other kinds of pollution found in bays). The fish also exhibited changed gene markers in their livers, indicating their entire physiology was affected. In a concurrent test, the fullerenes killed water fleas, an important link in the marine food chain. The extremely small size of fabricated nanomaterials also means that they are much more readily taken up by living tissue than presently known toxins. Nanoparticles can be inhaled, swallowed, absorbed through skin and deliberately or accidentally injected during medical procedures. They might be accidentally or inadvertently released from materials implanted into living tissue.

Researcher Shosaku Kashiwada of the National Institute for Environmental Studies in Tsukuba, Japan, in a more recent study, intended to further investigate the effects of nanoparticles on soft-bodied organisms. His study allowed him to explore the distribution of water-suspended fluorescent nanoparticles throughout the eggs and adult bodies of a species of fish, known as the see-through medaka (Oryzias latipes
Oryzias latipes
Oryzias latipes, also known as Medaka and Japanese killifish, is a member of genus Oryzias , the only genus in the subfamily Oryziinae. This rather small...

). See-through medaka were used because of their small size, wide temperature and salinity tolerances, and short generation time. Moreover, small fish like the see-through medaka have been popular test subjects for human diseases and organogenesis
Organogenesis
In animal development, organogenesis is the process by which the ectoderm, endoderm, and mesoderm develop into the internal organs of the organism. Internal organs initiate development in humans within the 3rd to 8th weeks in utero...

 for other reasons as well, including their transparent embryos, rapid embryo development, and the functional equivalence of their organs and tissue material to that of mammals. Because the see-through medaka have transparent bodies, analyzing the deposition of fluorescent nanoparticles throughout the body is quite simple. For his study, Dr. Kashiwada evaluated four aspects of nanoparticle accumulation. These included the overall accumulation and the size-dependent accumulation of nanoparticles by medaka eggs, the effects of salinity on the aggregation of nanoparticles in solution and on their accumulation by medaka eggs, and the distribution of nanoparticles in the blood and organs of adult medaka. It was also noted that nanoparticles were in fact taken up into the bloodstream and deposited throughout the body. In the medaka eggs, there was a high accumulation of nanoparticles in the yolk; most often bioavailibility was dependent on specific sizes of the particles. Adult samples of medaka had accumulated nanoparticles in the gills, intestine, brain
Brain
The brain is the center of the nervous system in all vertebrate and most invertebrate animals—only a few primitive invertebrates such as sponges, jellyfish, sea squirts and starfishes do not have one. It is located in the head, usually close to primary sensory apparatus such as vision, hearing,...

, testis, liver, and bloodstream. One major result from this study was the fact that salinity may have a large influence on the bioavailibility and toxicity of nanoparticles to penetrate membranes and eventually kill the specimen.

As the use of nanomaterials increases worldwide, concerns for worker and user safety are mounting. To address such concerns, the Swedish
Sweden
Sweden , officially the Kingdom of Sweden , is a Nordic country on the Scandinavian Peninsula in Northern Europe. Sweden borders with Norway and Finland and is connected to Denmark by a bridge-tunnel across the Öresund....

 Karolinska Institute conducted a study in which various nanoparticles were introduced to human lung epithelial cells. The results, released in 2008, showed that iron oxide
Iron oxide
Iron oxides are chemical compounds composed of iron and oxygen. All together, there are sixteen known iron oxides and oxyhydroxides.Iron oxides and oxide-hydroxides are widespread in nature, play an important role in many geological and biological processes, and are widely utilized by humans, e.g.,...

 nanoparticles caused little DNA
DNA
Deoxyribonucleic acid is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms . The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in...

 damage and were non-toxic. Zinc oxide
Zinc oxide
Zinc oxide is an inorganic compound with the formula ZnO. It is a white powder that is insoluble in water. The powder is widely used as an additive into numerous materials and products including plastics, ceramics, glass, cement, rubber , lubricants, paints, ointments, adhesives, sealants,...

 nanoparticles were slightly worse. Titanium dioxide
Titanium dioxide
Titanium dioxide, also known as titanium oxide or titania, is the naturally occurring oxide of titanium, chemical formula . When used as a pigment, it is called titanium white, Pigment White 6, or CI 77891. Generally it comes in two different forms, rutile and anatase. It has a wide range of...

 caused only DNA damage. Carbon nanotubes caused DNA damage at low levels. Copper oxide
Copper oxide
Copper oxide is a compound from the two elements copper and oxygen.Copper oxide may refer to:*Copper oxide , a red powder;*Copper oxide , a black powder...

 was found to be the worst offender, and was the only nanomaterial identified by the researchers as a clear health risk.

No Fullerene toxicity reported

Nanoparticles can also be made of C60, as is the case with almost any room temperature solid, and several groups have done this and studied toxicity of such particles. The results in the work of Oberdörster at Southern Methodist University
Southern Methodist University
Southern Methodist University is a private university in Dallas, Texas, United States. Founded in 1911 by the Methodist Episcopal Church, South, SMU operates campuses in Dallas, Plano, and Taos, New Mexico. SMU is owned by the South Central Jurisdiction of the United Methodist Church...

, published in "Environmental Health Perspectives" in July 2004, in which questions were raised of potential cytotoxicity, has now been shown by several sources to be likely caused by the tetrahydrofuran used in preparing the 30 nm–100 nm particles of C60 used in the research. Isakovic, et al., 2006, who review this phenomenon, gives results showing that removal of THF from the C60 particles resulted in a loss of toxicity. Sayes, et al., 2007, also show that particles prepared as in Oberdorster caused no detectable inflammatory response when instilled intratracheally in rats after observation for 3 months, suggesting that even the particles prepared by Oberdorster do not exhibit markers of toxicity in mammalian models. This work used as a benchmark quartz particles, which did give an inflammatory response.

A comprehensive and recent review of work on fullerene toxicity is available in "Toxicity Studies of Fullerenes and Derivatives," a chapter from the book "Bio-applications of Nanoparticles". In this work, the authors review the work on fullerene toxicity beginning in the early 1990s to present, and conclude that the evidence gathered since the discovery of fullerenes overwhelmingly points to C60 being non-toxic. As is the case for toxicity profile with any chemical modification of a structural moiety, the authors suggest that individual molecules be assessed individually.

Immunogenicity of nanoparticles

Very little attention has been directed towards the potential immunogenicity of nanostructures. Nanostructures can activate the immune system inducing inflammation, immune responses, allergy, or even affect to the immune cells in a deleterious or beneficial way (immunosuppression in autoimmune diseases, improving immune responses in vaccines). More studies are needed in order to know the potential deleterious or beneficial effects of nanostructures in the immune system. In comparison to conventional pharmeceutical agents, nanostructures have very large sizes and immune cells, especially phagocytic cells, recognize and try to destroy them.

Complications with nanotoxicity studies

Size is therefore a key factor in determining the potential toxicity of a particle. However it is not the only important factor. Other properties of nanomaterials that influence toxicity include: chemical composition, shape, surface structure, surface charge, aggregation and solubility,
and the presence or absence of functional group
Functional group
In organic chemistry, functional groups are specific groups of atoms within molecules that are responsible for the characteristic chemical reactions of those molecules. The same functional group will undergo the same or similar chemical reaction regardless of the size of the molecule it is a part of...

s of other chemicals.
The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials – each new nanomaterial must be assessed individually and all material properties must be taken into account.

In addition, standarization of toxicology tests between laboratories are needed. Díaz, B. et al. from the University of Vigo (Spain) has shown (Small, 2008) that many different cell lines should be studied in order to know if a nanostructure induces toxicity, and human cells can internalize aggregated nanoparticles. Moreover, it is important to take into account that many nanostructures aggregate in biological fluids, but groups manufacturing nanostructures do not care much about this matter. Many efforts of interdisciplinary groups are strongly needed in order to progress in this field.

Effect of aggregation/agglomeration of nanoparticles

Many nanoparticles agglomerate or aggregate when they are placed in environmental or biological fluids. The terms agglomeration and aggregation have distinct definitions according to the standards organizations ISO and ASTM, where agglomeration signifies more loosely bound particles and aggregation signifies very tightly bound or fused particles (typically occurring during synthesis or drying). Nanoparticles frequently agglomerate due to the high ionic strength of environmental and biological fluids, which shields the repulsion due to charges on the nanoparticles. Unfortunately, agglomeration has frequently been ignored in nanotoxicity studies, even though agglomeration would be expected to affect nanotoxicity since it changes the size, surface area, and sedimentation properties of the nanoparticles. In addition, many nanoparticles will agglomerate to some extent in the environment or in the body before they reach their target, so it is desirable to study how toxicity is affected by agglomeration.

A method was published that can be used to produce different mean sizes of stable agglomerates of several metal, metal oxide, and polymer nanoparticles in cell culture media for cell toxicity studies. Different mean sizes of agglomerates are produced by allowing the nanoparticles to agglomerate to a particular size in cell culture media without protein, and then adding protein to coat the agglomerates and "freeze" them at that size. By waiting different amounts of time before adding protein, different mean sizes of agglomerates of a single type of nanoparticle can be produced in an otherwise identical solution, allowing one to study how agglomerate size affects toxicity. In addition, it was found that vortexing while adding a high concentration of nanoparticles to the cell culture media produces much less agglomerated nanoparticles than if the dispersed solution is only mixed after adding the nanoparticles.

Challenges of the nano-visualisation and related unknowns in nanotoxicology

With comparison to more conventional toxicology studies, the nanotoxicology field is however suffering form a lack of easy characterisation of the potential contaminants, the "nano" scale been still a scale difficult to apprehend. The biological systems are themselves still not completely known at this scale. Ultimate Atomic visualisation methods such as Electron microscopy (SEM and TEM) and Atomic force Microscopy (AFM) analysis are allowing fantastic progresses in the visualisation of the nano world. Yet, further nanotoxicology studies will require extremely precise characterisation of the specificities of a given nano-element : size, chemical composition, detailed shape, level of aggregation, combination with other vectors, etc. Above all, these properties would have to be determined not only on the nanocomponent before its introduction in the living environnment but also in the (mostly acqueous) biological environnement. This is why nanotoxicoly is a fantastic field of research. This is also why it is not easy to determine to what extent a given nanoparticule has a dramatic effect when compared to comparable nanoparticules already present in our environnement either through natural/biological origin (see exosoms possibly implied in neural communication ) or through ancestral human activity (ashes).

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK