List of character tables for chemically important 3D point groups
Encyclopedia
This lists the character table
Character table
In group theory, a character table is a two-dimensional table whose rows correspond to irreducible group representations, and whose columns correspond to classes of group elements...

s for the more common molecular point groups
Point groups in three dimensions
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O, the group of all isometries that leave the origin fixed, or correspondingly, the group...

 used in the study of molecular symmetry
Molecular symmetry
Molecular symmetry in chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can predict or explain many of a molecule's chemical properties, such as its dipole moment...

. These tables are based on the group-theoretical
Group theory
In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces can all be seen as groups endowed with additional operations and...

 treatment of the symmetry
Symmetry
Symmetry generally conveys two primary meanings. The first is an imprecise sense of harmonious or aesthetically pleasing proportionality and balance; such that it reflects beauty or perfection...

 operations present in common molecule
Molecule
A molecule is an electrically neutral group of at least two atoms held together by covalent chemical bonds. Molecules are distinguished from ions by their electrical charge...

s, and are useful in molecular spectroscopy
Spectroscopy
Spectroscopy is the study of the interaction between matter and radiated energy. Historically, spectroscopy originated through the study of visible light dispersed according to its wavelength, e.g., by a prism. Later the concept was expanded greatly to comprise any interaction with radiative...

 and quantum chemistry
Quantum chemistry
Quantum chemistry is a branch of chemistry whose primary focus is the application of quantum mechanics in physical models and experiments of chemical systems...

. Information regarding the use of the tables, as well as more extensive lists of them, can be found in the references.

Notation

For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group
Order (group theory)
In group theory, a branch of mathematics, the term order is used in two closely related senses:* The order of a group is its cardinality, i.e., the number of its elements....

 (number of invariant symmetry operations). The finite group notation used is: Zn: cyclic group
Cyclic group
In group theory, a cyclic group is a group that can be generated by a single element, in the sense that the group has an element g such that, when written multiplicatively, every element of the group is a power of g .-Definition:A group G is called cyclic if there exists an element g...

 of order n, Dn: dihedral group
Dihedral group
In mathematics, a dihedral group is the group of symmetries of a regular polygon, including both rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.See also: Dihedral symmetry in three...

 isomorphic to the symmetry group of an n–sided regular polygon, Sn: symmetric group
Symmetric group
In mathematics, the symmetric group Sn on a finite set of n symbols is the group whose elements are all the permutations of the n symbols, and whose group operation is the composition of such permutations, which are treated as bijective functions from the set of symbols to itself...

 on n letters, and An: alternating group on n letters.

The character tables then follow for all groups. The rows of the character tables correspond to the irreducible representations of the group, with their conventional names in the left margin. The naming conventions are as follows:
  • A and B are singly degenerate representations, with the former transforming symmetrically around the principal axis of the group, and the latter asymmetrically. E, T, G, H, ... are doubly, triply, quadruply, quintuply, ... degenerate representations.
  • g and u subscripts denote symmetry and antisymmetry, respectively, with respect to a center of inversion. Subscripts "1" and "2" denote symmetry and antisymmetry, respectively, with respect to a nonprincipal rotation axis. Higher numbers denote additional representations with such asymmetry.
  • Single prime ( ' ) and double prime ( ) superscripts denote symmetry and antisymmetry, respectively, with respect to a horizontal mirror plane σh, one perpendicular to the principal rotation axis.


All but the two rightmost columns correspond to the symmetry operation
Symmetry operation
In the context of molecular symmetry, a symmetry operation may be defined as a permutation of atoms such that the molecule or crystal is transformed into a state indistinguishable from the starting state....

s which are invariant in the group. In the case of sets of similar operations with the same characters for all representations, they are presented as one column, with the number of such similar operations noted in the heading.

The body of the tables contain the characters in the respective irreducible representations for each respective symmetry operation, or set of symmetry operations.

The two rightmost columns indicate which irreducible representations describe the symmetry transformations of the three Cartesian coordinates (x, y and z), rotations about those three coordinates (Rx, Ry and Rz), and functions of the quadratic terms of the coordinates(x2, y2, z2, xy, xz, and yz).

The symbol i used in the body of the table denotes the imaginary unit
Imaginary unit
In mathematics, the imaginary unit allows the real number system ℝ to be extended to the complex number system ℂ, which in turn provides at least one root for every polynomial . The imaginary unit is denoted by , , or the Greek...

: i 2 = −1. Used in a column heading, it denotes the operation of inversion. A superscripted uppercase "C" denotes complex conjugation
Complex conjugate
In mathematics, complex conjugates are a pair of complex numbers, both having the same real part, but with imaginary parts of equal magnitude and opposite signs...

.

Nonaxial symmetries

These groups are characterized by a lack of a proper rotation axis, noting that a C1 rotation is considered the identity operation. These groups have involutional symmetry: the only nonidentity operation, if any, is its own inverse.

In the group C1, all functions of the Cartesian coordinates and rotations about them transform as the A irreducible representation.
! Point
Group !! Canonical
Group !! Order !! Character Table
|- style="background:#fafafa;"
| C1  >
Z1 {> border="1" style="text-align:center"
|  
>-
| A

|- style="background:#fafafa;"
| Ci
Z2 {> border="1" style="text-align:center"
|  
E i  
|-
| Ag
1 > Rx, Ry, Rz
| x2, y2, z2, xy, xz, yz
|-
| Au
1 −1 x, y, z
|- style="background:#fafafa;"
| Cs
Z2 {|>border="1" style="text-align:center"
|  
E σh   
|-
| A'
1 > x, y, Rz
| x2, y2, z2, xy
|-
| A
1 > z, Rx, Ry >}
|-

Cyclic groups (Cn)

The cyclic groups are denoted by Cn. These groups are characterized by an n-fold proper rotation axis Cn. The C1 group is covered in the nonaxial groups section.
! Point
Group !! Canonical
Group !! Order !! Character Table
|-
| C2 >
Z2 {> style="text-align:center"
|  
E C2   
|-
| A
1 1 z, z
> x2, y2, z2, xy
|-
| B
1 −1 x, Ry, x, y
> xz, yz
|}
|-
| C3
Z3 {|>style="text-align:center"
|  
E C3  32
> colspan="2" | θ = e2πi /3
|-
| A
1 1 1 z, z
> x2 + y2
|-
| E
1
> θ 
θC
| θC
θ 
| (Rx, Ry),
(x, y)
| (x2 + y2, xy),
(xz, yz)
|-
|}
|-
| C4
Z4 {|>style="text-align:center"
|  
E 4 
> C2 
43
> colspan="2" |  
|-
| A
1 1 1 1 z, z
> x2 + y2, z2
|-
| B
1 −1 1 −1 > x2 − y2, xy
|-
| E
1
1
i
−i
−1
−1
i
> (Rx, Ry),
(x, y)
>-
|}
|-
| C5
Z5 {|>style="text-align:center"
|  
  
> C5 
52
> C53
54
> colspan="2" | θ = e2πi /5
|-
| A
1 1 1 1 1 z, z
> x2 + y2, z2
|-
| E1
| 1
1
| θ 
θC
| θ2
2)C
| (θ2)C
θ2
| θC
θ 
| (Rx, Ry),
(x, y)
>-
| E2
| 1
1
| θ2
2)C
| θC
θ 
| θ 
θC
| (θ2)C
θ2
|  
2 - y2, xy)
>-
|}
|-
| C6
Z6 {|>style="text-align:center"
|  
  
> C6 
3 
> C2 
32
> C65
| colspan="2" | θ = e2πi /6
|-
| A
1 1 1 1 1 1 z, z
> x2 + y2, z2
|-
| B
1 −1 1 −1 1 −1   >-
| E1
| 1
1
| θ 
θC
| −θC
−θ 
| −1
−1
| −θ 
−θC
| θC
−θ 
| (Rx, Ry),
(x, y)
| (xz, yz)
|-
| E2
| 1
1
| −θC
−θ 
| −θ 
−θC
| 1
1
| −θC
−θ 
| −θ 
−θC
|  
2 − y2, xy)
>-
|}
|-
| C8
Z8 {|>style="text-align:center"
|  
  
> C8 
4 
> C83
2 
> C85
42
> C87
| colspan="2" | θ = e2πi /8
|-
| A
1 1 1 1 1 1 1 1 z, z
> x2 + y2, z2
|-
| B
1 −1 1 −1 1 −1 1 −1   >-
| E1
| 1
1
| θ 
θC
| i
−i
| −θC
−θ 
| −1
−1
| −θ 
−θC
| −i
i
| θC
θ 
| (Rx, Ry),
(x, y)
| (xz, yz)
|-
| E2
| 1
1
| i
−i
| −1
−1
| −i
i
| 1
1
| i
−i
| −1
−1
| −i
i
|  
2 − y2, xy)
>-
| E3
| 1
1
| −θ 
−θC
| i
−i
| θC
θ 
| −1
−1
| θ 
θC
| −i
i
| −θC
−θ 
|  
>-
|}
|-

Reflection groups (Cnh)

The reflection groups are denoted by Cnh. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) a mirror plane σh normal to Cn. The C1h group is the same as the Cs group in the nonaxial groups section.
! Point
Group !! Canonical
group !! Order !! Character Table
|-
| C2h >
Z2 × Z2 {|> style="text-align:center"
|  
E 2 
> i
σh   
|-
| Ag
1 1 1 1 z
> x2, y2, z2, xy
|-
| Bg
1 −1 1 −1 x, Ry
> xz, yz
|-
| Au
1 1 −1 −1 z >-
| Bu
1 −1 −1 1 x, y >-
|}
|-
| C3h
Z6 {> style="text-align:center"
|  
E 3 
> C32
h 
> S3 
35
> colspan="2" | θ = e2πi /3
|-
| A'
1 1 1 1 1 1 z
> x2 + y2, z2
|-
| E'
1
1
| θ 
θC
| θC
θ 
| 1
1
| θ 
θC
| θC
θ 
| (x, y)
2 − y2, xy)
>-
| A
1 1 1 −1 −1 −1 z >-
| E
1
1
| θ 
θC
| θC
θ 
| −1
−1
| −θ 
−θC
| −θC
−θ 
| (Rx, Ry)
>-
|}
|-
| C4h
Z2 × Z4 {> style="text-align:center"
|  
E 4 
> C2 
43
> i
S43 h 
> S4 
 
|-
| Ag
1 1 1 1 1 1 1 > Rz 2 + y2, z2
>-
| Bg
1 −1 1 −1 1 −1 1 >   2 − y2, xy
>-
| Eg
1
1
i
−i
−1
> −i
i
1
1
−i
> −1
−1
i
> (Rx, Ry)
>-
| Au
1 1 1 1 −1 −1 −1 −1 z >-
| Bu
1 −1 1 −1 −1 1 −1 1   >-
| Eu
1
1
i
−i
−1
> −i
i
−1
−1
i
> 1
1
−i
> (x, y)
>-
|}
|-
| C5h
Z10 {|>style="text-align:center"
|  
  
> C5 
52
> C53
54
> σh 
5 
> S57
53
> S59
| colspan="2" | θ = e2πi /5
|-
| A'
1 1 1 1 1 1 1 1 1 1 z
> x2 + y2, z2
|-
| E1'
| 1
1
| θ 
θC
| θ2
2)C
| (θ2)C
θ2
| θC
θ 
| 1
1
| θ 
θC
| θ2
2)C
| (θ2)C
θ2
| θC
θ 
| (x, y)
>-
| E2'
| 1
1
| θ2
2)C
| θC
θ 
| θ 
θC
| (θ2)C
θ2
| 1
1
| θ2
2)C
| θC
θ 
| θ 
θC
| (θ2)C
θ2
|  
2 - y2, xy)
>-
| A
1 1 1 1 > −1 −1 −1 −1 > z >-
| E1
| 1
1
| θ 
θC
| θ2
2)C
| (θ2)C
θ2
| θC
θ 
| −1
−1
| −θ 
C
| −θ2
−(θ2)C
| −(θ2)C
−θ2
| −θC
−θ 
| (Rx, Ry)
>-
| E2
| 1
1
| θ2
2)C
| θC
θ 
| θ 
θC
| (θ2)C
θ2
| −1
−1
| −θ2
−(θ2)C
| −θC
−θ 
| −θ 
−θC
| −(θ2)C
−θ2
|  
>-
|}
|-
| C6h
Z2 × Z6 {|>style="text-align:center"
|  
  
> C6 
3 
> C2 
32
> C65
i 35
> S65
h 
> S6 
3 
> colspan="2" | θ = e2πi /6
|-
| Ag
1 1 1 1 1 1 1 1 1 1 1 > Rz 2 + y2, z2
>-
| Bg
1 −1 1 −1 1 > 1 −1 1 −1 1 >   >-
| E1g
| 1
1
| θ 
θC
| −θC
−θ 
| −1
−1
| −θ 
−θC
| θC
θ 
| 1
1
| θ 
θC
| −θC
−θ 
| −1
−1
| −θ 
−θC
| θC
θ 
| (Rx, Ry)
>-
| E2g
| 1
1
| −θC
−θ 
| −θ 
−θC
| 1
1
| −θC
−θ 
| −θ 
−θC
| 1
1
| −θC
−θ 
| −θ 
−θC
| 1
1
| −θC
−θ 
| −θ 
−θC
|  
2 − y2, xy)
>-
| Au
1 1 1 1 1 > −1 −1 −1 −1 −1 > z >-
| Bu
1 −1 1 −1 1 > −1 1 −1 1 −1 >   >-
| E1u
| 1
1
| θ 
θC
| −θC
−θ 
| −1
−1
| −θ 
−θC
| θC
θ 
| −1
−1
| −θ 
−θC
| θC
θ 
| 1
1
| θ 
θC
| −θC
−θ 
| (x, y)
>-
| E2u
| 1
1
| −θC
−θ 
| −θ 
−θC
| 1
1
| −θC
−θ 
| −θ 
−θC
| −1
−1
| θC
θ 
| θ 
θC
| −1
−1
| θC
θ 
| θ 
θC
|  
>}
|-

Pyramidal groups (Cnv)

The pyramidal groups are denoted by Cnv. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n mirror planes σv which contain Cn. The C1v group is the same as the Cs group in the nonaxial groups section.
! Point
Group !! Canonical
group !!Order !! Character Table
|-
| C2v >
Z2 × Z2
(=D2)
{> style="text-align:center"
|  
E 2 
> σv 
| σv' 
| colspan="2" |  
|-
| A1
1 1 1 1 > x2, y2, z2
|-
| A2
1 1 −1 −1 Rz >-
| B1
1 −1 1 −1 Ry, x >-
| B2
1 −1 −1 1 Rx, y >-
|}
|-
| C3v
D3 {> style="text-align:center"
|  
E 3 
> 3 σv 
| colspan="2" |  
|-
| A1
1 1 1 > x2 + y2, z2
|-
| A2
1 1 −1 Rz >-
| E
2 −1 0 x, Ry), (x, y)
> (x2 − y2, xy), (xz, yz)
|-
|}
|-
| C4v
D4 {> style="text-align:center"
|  
E 4 
> C2 
v 
> 2 σd 
 
|-
| A1
1 1 1 1 > z 2 + y2, z2
>-
| A2
1 1 1 −1 −1 Rz >-
| B1
1 −1 1 1 >   2 − y2
>-
| B2
1 −1 1 −1 1   >-
| E
2 0 −2 0 > (Rx, Ry), (x, y) >-
|}
|-
| C5v
D5 {|>style="text-align:center"
|  
  
> 2 C5 
52
> 5 σv 
θ = 2π/5
|-
| A1
1 1 1 1 > x2 + y2, z2
|-
| A2
1 1 1 −1 Rz >-
| E1
2 2 cos(θ) 2 cos(2θ) > (Rx, Ry), (x, y) >-
| E2
2 2 cos(2θ) 2 cos(θ) >   2 − y2, xy)
>-
|}
|-
| C6v
D6 {|>style="text-align:center"
|  
  
> 2 C6 
3 
> C2 
v 
> 3 σd 
 
|-
| A1
1 1 1 1 1 > z 2 + y2, z2
>-
| A2
1 1 1 1 −1 −1 Rz >-
| B1
1 −1 1 −1 1 −1   >-
| B2
1 −1 1 −1 −1 1   >-
| E1
2 1 −1 −2 0 > (Rx, Ry), (x, y) >-
| E2
2 −1 −1 2 0 0 > (x2 − y2, xy)
|}
|-

Improper rotation groups (Sn)

The improper rotation groups are denoted by Sn. These groups are characterized by an n-fold improper rotation axis Sn, where n is necessarily even. The S2 group is the same as the Cs group in the nonaxial groups section.

The S8 table reflects the 2007 discovery of errors in older references. Specifically, (Rx, Ry) transform not as E1 but rather as E3.
! Point
Group !! Canonical
group !! Order !! Character Table
|-
| S4 >
Z4 {> style="text-align:center"
|  
E 4 
> C2 
43
> colspan="2" |  
|-
| A
1 1 1 1 z,  
> x2 + y2, z2
|-
| B
1 −1 1 −1 > x2 − y2, xy
|-
| E
1
1
i
−i
−1
> −i
i
| (Rx, Ry),
(x, y)
>-
|}
|-
| S6
Z6 {|>style="text-align:center"
|  
  
> S6 
3 
> i
C32 65
> colspan="2" | θ = e2πi /6
|-
| Ag
1 1 1 1 1 1 z
> x2 + y2, z2
|-
| Eg
| 1
1
| θC
θ 
| θ 
θC
| 1
1
| θC
θ 
| θ 
θC
| (Rx, Ry)
| (x2 − y2, xy),
(xz, yz)
|-
| Au
1 −1 1 −1 1 −1 z >-
| Eu
| 1
1
| −θC
−θ 
| θ 
θC
| −1
−1
| θC
θ 
| −θ 
−θC
| (x, y)
>-
|}
|-
| S8
Z8 {|>style="text-align:center"
|  
  
> S8 
4 
> S83
> S85 42
> S87
| colspan="2" | θ = e2πi /8
|-
| A
1 1 1 1 1 1 1 1 z
> x2 + y2, z2
|-
| B
1 −1 1 −1 1 −1 1 −1 z >-
| E1
| 1
1
| θ 
θC
| i
−i
| −θC
−θ 
| −1
−1
| −θ 
−θC
| −i
i
| θC
θ 
| (x, y)
>-
| E2
| 1
1
i
−i
−1
> −i
i
1
1
−i
> −1
−1
i
>  
2 − y2, xy)
>-
| E3
| 1
1
| −θC
−θ 
| −i
i
| θ 
θC
| −1
−1
| θC
θ 
| i
−i
| −θ
−θC
| (Rx, Ry)
>-
|}
|-

Dihedral symmetries

The families of groups with these symmetries are characterized by 2-fold proper rotation axes normal to a principal rotation axis.

Dihedral groups (Dn)

The dihedral groups are denoted by Dn. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n 2-fold proper rotation axes C2 normal to Cn. The D1 group is the same as the C2 group in the cyclic groups section.
! Point
Group !! Canonical
group !!Order !! Character Table
|-
| D2 >
Z2 × Z2
(=D2)
{|> style="text-align:center"
|  
E 2 (z)
> C2 (x)
| C2 (y)
 
|-
| A
1 1 1 1 > x2, y2, z2
|-
| B1
1 1 −1 −1 Rz, z >-
| B2
1 −1 −1 1 Ry, y >-
| B3
1 −1 1 −1 Rx, x >-
|}
|-
| D3
D3 {|> style="text-align:center"
|  
E 3 
> 3 C2 
 
|-
| A1
1 1 1 > x2 + y2, z2
|-
| A2
1 1 −1 Rz, z >-
| E
2 −1 0 x, Ry), (x, y)
> (x2 − y2, xy), (xz, yz)
|-
|}
|-
| D4
D4 {|>style="text-align:center"
|  
E 4 
> C2 
2' 
> 2 C2 
| colspan="2" |  
|-
| A1
1 1 1 1 1 > x2 + y2, z2
|-
| A2
1 1 1 −1 −1 Rz, z >-
| B1
1 −1 1 1 >   2 − y2
>-
| B2
1 −1 1 −1 1   >-
| E
2 0 −2 0 > (Rx, Ry), (x, y) >-
|}
|-
| D5
D5 {| s>yle="text-align:center"
|  
  
> 2 C5 
52
> 5 C2 
θ=2π/5
|-
| A1
1 1 1 1 > x2 + y2, z2
|-
| A2
1 1 1 −1 Rz, z >-
| E1
2 2 cos(θ) 2 cos(2θ) > (Rx, Ry), (x, y) >-
| E2
2 2 cos(2θ) 2 cos(θ) >   2 − y2, xy)
>-
|}
|-
| D6
D6 {| s>yle="text-align:center"
|  
  
> 2 C6 
3 
> C2 
2' 
> 3 C2 
| colspan="2" |  
|-
| A1
1 1 1 1 1 1 > x2 + y2, z2
|-
| A2
1 1 1 1 −1 > Rz, z >-
| B1
1 −1 1 −1 1 −1   >-
| B2
1 −1 1 −1 −1 1   >-
| E1
2 1 −1 −2 0 > (Rx, Ry), (x, y) >-
| E2
2 −1 −1 2 0 0 > (x2 − y2, xy)
|}
|-

Prismatic groups (Dnh)

The prismatic groups are denoted by Dnh. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n 2-fold proper rotation axes C2 normal to Cn; iii) a mirror plane σh normal to Cn and containing the C2s. The D1h group is the same as the C2v group in the pyramidal groups section.

The D8h table reflects the 2007 discovery of errors in older references. Specifically, symmetry operation column headers 2S8 and 2S83 were reversed in the older references.
! Point
Group !! Canonical
group !!Order !! Character Table
|-
| D2h
| Z2×Z2×Z2
(=Z2×D2) >
{| >style="text-align:center"
|  
E 2 
> C2 (x)
| C2 (y)
> σ(xy)  
| σ(xz)  
| σ(yz)  
 
|-
| Ag
1 1 1 1 1 1 1 1 > x2, y2, z2
|-
| B1g
1 1 −1 −1 1 1 −1 > Rz >-
| B2g
1 −1 −1 1 1 −1 1 > Ry >-
| B3g
1 −1 1 −1 1 −1 −1 > Rx >-
| Au
1 1 1 > −1 −1 −1 −1   >-
| B1u
1 1 −1 > −1 −1 1 1 z >-
| B2u
1 −1 −1 > −1 1 −1 1 y >-
| B3u
1 −1 1 > −1 1 1 −1 x >-
|}
|-
| D3h
D6 {|> style="text-align:center"
|  
E 3 
> 3 C2 
h 
> 2 S3 
v 
> colspan="2" |  
|-
| A1'
1 1 1 1 1 1 > x2 + y2, z2
|-
| A2'
1 1 −1 1 1 −1 Rz >-
| E'
2 −1 0 2 −1 0 > (x2 − y2, xy)
|-
| A1
1 1 1 −1 −1 >   >-
| A2
1 1 −1 −1 −1 > z >-
| E
2 −1 0 −2 1 > (Rx, Ry) >-
|}
|-
| D4h
Z2×D4 {|>style="text-align:center"
|  
E 4 
> C2 
2' 
> 2 C2 
> 2 S4  h 
> 2 σv 
| 2 σd 
 
|-
| A1g
1 1 1 1 1 1 1 1 1 >   2 + y2, z2
>-
| A2g
1 1 1 −1 > 1 1 1 −1 > Rz >-
| B1g
1 −1 1 1 > 1 −1 1 1 >   2 − y2
>-
| B2g
1 −1 1 −1 > 1 −1 1 −1 >   >-
| Eg
2 0 −2 0 0 2 0 −2 0 > (Rx, Ry) >-
| A1u
1 1 1 1 > −1 −1 −1 −1 >   >-
| A2u
1 1 1 −1 > −1 −1 −1 1 > z >-
| B1u
1 −1 1 1 > −1 1 −1 −1 >   >-
| B2u
1 −1 1 −1 > −1 1 −1 1 >   >-
| Eu
2 0 −2 0 0 −2 0 2 0 > (x, y) >-
|}
|-
| D5h
D10 {|>style="text-align:center"
|  
  
> 2 C5 
52
> 5 C2 
| σh 
5 
> 2 S53
v 
> colspan="2" | θ=2π/5
|-
| A1'
1 1 1 1 1 1 1 >   2 + y2, z2
>-
| A2'
1 1 1 −1 1 1 1 > Rz >-
| E1'
2 2 cos(θ) 2 cos(2θ) 0 > 2 cos(θ) 2 cos(2θ) 0 (x, y) >-
| E2'
2 2 cos(2θ) 2 cos(θ) 0 > 2 cos(2θ) 2 cos(θ) >   2 − y2, xy)
>-
| A1
1 1 1 > −1 −1 −1 >   >-
| A2
1 1 1 > −1 −1 −1 > z >-
| E1
2 > 2 cos(2θ) 0 −2 > −2 cos(2θ) > (Rx, Ry) >-
| E2
2 > 2 cos(θ) 0 −2 > −2 cos(θ) 0   >-
|}
|-
| D6h
| Z2×D6
{| s>yle="text-align:center"
|  
  
> 2 C6 
3 
> C2 
2' 
> 3 C2 
> 2 S3  6 
> σh 
d 
> 3 σv 
 
|-
| A1g
1 1 1 1 1 1 1 1 1 1 1 >   2 + y2, z2
>-
| A2g
1 1 1 1 −1 > 1 1 1 1 −1 > Rz >-
| B1g
1 −1 1 −1 1 > 1 −1 1 −1 1 >   >-
| B2g
1 −1 1 −1 −1 > 1 −1 1 −1 −1 >   >-
| E1g
2 1 −1 −2 0 > 2 1 −1 −2 0 > (Rx, Ry) >-
| E2g
2 −1 −1 2 0 > 2 −1 −1 2 0 >   2 − y2, xy)
>-
| A1u
1 1 1 1 1 > −1 −1 −1 −1 −1 >   >-
| A2u
1 1 1 1 −1 > −1 −1 −1 −1 1 > z >-
| B1u
1 −1 1 −1 1 > −1 1 −1 1 −1 >   >-
| B2u
1 −1 1 −1 −1 > −1 1 −1 1 1 >   >-
| E1u
2 1 −1 −2 0 > −2 −1 1 2 0 > (x, y) >-
| E2u
2 −1 −1 2 0 > −2 1 1 −2 0 >   >}
|-
| D8h
Z2×D8 {|>style="text-align:center"
|  
  
> 2 C8 
83
> 2 C4 
2 
> 4 C2' 
| 4 C2 
> 2 S83 8 
> 2 S4 
| σh 
| 4 σd 
| 4 σv 
| colspan="2" | θ=21/2
|-
| A1g
1 1 1 1 1 1 > 1 1 1 1 1 1 >   2 + y2, z2
>-
| A2g
1 1 1 1 1 −1 > 1 1 1 1 1 −1 −1 Rz >-
| B1g
1 −1 −1 1 1 1 > 1 −1 −1 1 1 1 −1   >-
| B2g
1 −1 −1 1 1 −1 > 1 −1 −1 1 1 −1 1   >-
| E1g
2 θ −θ 0 −2 0 > 2 θ −θ 0 −2 0 > (Rx, Ry) >-
| E2g
2 0 0 −2 2 0 > 2 0 0 −2 2 0 >   2 − y2, xy)
>-
| E3g
2 −θ θ 0 −2 0 > 2 −θ θ 0 −2 0 >   >-
| A1u
1 1 1 1 1 1 > −1 −1 −1 −1 −1 −1 −1   >-
| A2u
1 1 1 1 1 −1 > −1 −1 −1 −1 −1 1 1 z >-
| B1u
1 −1 −1 1 1 1 > −1 1 1 −1 −1 −1 1   >-
| B2u
1 −1 −1 1 1 −1 > −1 1 1 −1 −1 1 >   >-
| E1u
2 θ −θ 0 −2 0 > −2 −θ θ 0 2 0 > (x, y) >-
| E2u
2 0 0 −2 2 0 > −2 0 0 2 −2 0 0   >-
| E3u
2 −θ θ 0 −2 0 > −2 θ −θ 0 2 0 >   >}
|-

Antiprismatic groups (Dnd)

The antiprismatic groups are denoted by Dnd. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n 2-fold proper rotation axes C2 normal to Cn; iii) n mirror planes σd which contain Cn. The D1d group is the same as the C2h group in the reflection groups section.
! Point
Group !! Canonical
group !! Order !! Character Table
|-
| D2d >
D4 {> style="text-align:center"
|  
E  4 
> C2 
2' 
> 2 σd 
 
|-
| A1
1 1 1 1 1 > x2, y2, z2
|-
| A2
1 1 1 −1 −1 Rz >-
| B1
1 −1 1 1 −1 > x2 − y2
|-
| B2
1 −1 1 −1 1 z >-
| E
2 0 −2 0 > (Rx, Ry), (x, y) >-
|}
|-
| D3d
D6 {|> style="text-align:center"
|  
E  3 
> 3 C2 
 
> 2 S6 
| 3 σd 
| colspan="2" |  
|-
| A1g
1 1 1 1 1 1 > x2 + y2, z2
|-
| A2g
1 1 −1 1 1 > Rz >-
| Eg
2 −1 0 2 −1 > (Rx, Ry)
| (x2 − y2, xy), (xz, yz)
|-
| A1u
1 1 1 −1 −1 −1   >-
| A2u
1 1 −1 −1 −1 1 z >-
| Eu
2 −1 0 −2 1 0 (x, y) >-
|}
|-
| D4d
D8 {|>style="text-align:center"
|  
E  8 
> 2 C4 
83
> C2 
2' 
> 4 σd 
| colspan="2" | θ=21/2
|-
| A1
1 1 1 1 1 1 >   2 + y2, z2
>-
| A2
1 1 1 1 1 −1 > Rz >-
| B1
1 −1 1 −1 1 1 −1   >-
| B2
1 −1 1 −1 1 −1 1 z >-
| E1
2 θ 0 −θ −2 0 > (x, y) >-
| E2
2 0 −2 0 2 0 >   2 − y2, xy)
>-
| E3
2 −θ 0 θ −2 0 > (Rx, Ry) >-
|}
|-
| D5d
D10 {|>style="text-align:center"
|  
  
> 2 C5 
52
> 5 C2 
 
> 2 S10 
103
> 5 σd 
| colspan="2" | θ=2π/5
|-
| A1g
1 1 1 1 1 1 1 1 > x2 + y2, z2
|-
| A2g
1 1 1 −1 1 1 1 > Rz >-
| E1g
2 2 cos(θ) 2 cos(2θ) > 2 2 cos(2θ) 2 cos(θ) > (Rx, Ry) >-
| E2g
2 2 cos(2θ) 2 cos(θ) > 2 2 cos(θ) 2 cos(2θ) >   2 − y2, xy)
>-
| A1u
1 1 1 > −1 −1 −1 −1   >-
| A2u
1 1 1 > −1 −1 −1 1 z >-
| E1u
2 2 cos(θ) 2 cos(2θ) > −2 −2 cos(2θ) −2 cos(θ) > (x, y) >-
| E2u
2 2 cos(2θ) 2 cos(θ) > −2 −2 cos(θ) −2 cos(2θ) >   >-
|}
|-
| D6d
D12 {|>style="text-align:center"
|  
  
> 2 S12 
6 
> 2 S4 
3 
> 2 S125
2 
> 6 C2' 
d 
> colspan="2" | θ=31/2
|-
| A1
1 1 1 1 1 1 1 1 >   2 + y2, z2
>-
| A2
1 1 1 1 1 1 1 −1 > Rz >-
| B1
1 −1 1 −1 1 −1 1 1 >   >-
| B2
1 −1 1 −1 1 −1 1 −1 > z >-
| E1
2 θ 1 0 > −θ −2 0 0 (x, y) >-
| E2
2 1 −1 −2 −1 1 2 0 0 > (x2 − y2, xy)
|-
| E3
2 0 −2 0 2 0 −2 0 >   >-
| E4
2 −1 −1 2 −1 −1 2 0 >   >-
| E5
2 −θ 1 0 > θ −2 0 > (Rx, Ry) >-
|}
|-

Polyhedral
Polyhedron
In elementary geometry a polyhedron is a geometric solid in three dimensions with flat faces and straight edges...

 symmetries

These symmetries are characterized by having more than one proper rotation axis of order greater than 2.

Cubic groups

These polyhedral groups are characterized by not having a C5 proper rotation axis.
! Point
Group !! Canonical
group !! Order !! Character Table
|-
| T >
A4 {|> style="text-align:center"
|  
E 3 
> 4 C32
| 3 C2 
| colspan="2" | θ=e2π i/3
|-
| A
1 1 1 1 > x2 + y2 + z2
|-
| E
1
1
 
θC
> θC
θ 
| 1
1
> (2 z2 − x2 − y2,
x2 − y2)
|-
| T
3 0 0 > (Rx, Ry, Rz),
(x, y, z)
| (xy, xz, yz)
|-
|}
|-
| Td 
S4 {|> style="text-align:center"
|  
E 3 
> 3 C2 
4 
> 6 σd 
| colspan="2" |  
|-
| A1
1 1 1 1 1 > x2 + y2 + z2
|-
| A2
1 1 1 −1 −1   >-
| E
2 −1 2 0 0 > (2 z2 − x2 − y2,
x2 − y2)
|-
| T1
3 0 −1 1 > (Rx, Ry, Rz) >-
| T2
3 0 −1 −1 > (x, y, z) >-
|}
|-
| Th 
Z2×A4 {|>style="text-align:center"
|  
E 3 
> 4 C32
| 3 C2 
> 4 S6  65
> 3 σh 
| colspan="2" | θ=e2π i/3
|-
| Ag
1 1 1 1 1 1 1 >   2 + y2 + z2
>-
| Au
1 1 1 1 −1 −1 −1 >   >-
| Eg
1
> θ 
θC
| θC
θ 
| 1
1
1
> θ 
θC
| θC
θ 
| 1
1
|  
| (2 z2 − x2 − y2,
x2 − y2)
|-
| Eu
1
> θ 
θC
| θC
θ 
| 1
1
−1
> −θ 
−θC
| −θC
−θ 
| −1
−1
|  
>-
| Tg
3 0 0 −1 3 0 0 > (Rx, Ry, Rz)
| (xy, xz, yz)
|-
| Tu
3 0 0 −1 −3 0 0 > (x, y, z) >-
|}
|-
| O 
S4 {|>style="text-align:center"
|  
  
> 6 C4 
| 3 C2  (C42)
| 8 C3 
2 
> colspan="2" |  
|-
| A1
1 1 1 1 1 > x2 + y2 + z2
|-
| A2
1 −1 1 1 −1   >-
| E
2 0 2 −1 0 > (2 z2 − x2 − y2,
x2 − y2)
|-
| T1
3 1 −1 0 > (Rx, Ry, Rz),
(x, y, z)
|  
|-
| T2
3 −1 −1 0 >   >-
|}
|-
| Oh
| Z2×S4
{|>style="text-align:center"
|  
  
> 8 C3 
2 
> 6 C4 
| 3 C2  (C42)
| i
4 
> 8 S6 
h 
> 6 σd 
| colspan="2" |  
|-
| A1g
1 1 1 1 1 1 1 1 1 >   2 + y2 + z2
>-
| A2g
1 1 −1 −1 1 1 −1 1 1 >   >-
| Eg
2 −1 0 0 2 2 0 −1 2 >  
| (2 z2 − x2 − y2,
x2 − y2)
|-
| T1g
3 0 −1 1 −1 3 1 0 −1 > (Rx, Ry, Rz)
|  
|-
| T2g
3 0 1 −1 −1 3 −1 0 −1 >   >-
| A1u
1 1 1 1 > −1 −1 −1 −1 >   >-
| A2u
1 1 −1 −1 > −1 1 −1 −1 >   >-
| Eu
2 −1 0 0 2 −2 0 1 −2 >   >-
| T1u
3 0 −1 1 > −3 −1 0 1 > (x, y, z) >-
| T2u
3 0 1 −1 > −3 1 0 1 >   >}
|-

Icosahedral groups

These polyhedral groups are characterized by having a C5 proper rotation axis.
! Point
Group !! Canonical
group !!Order !! Character Table
|-
| I >
A5 {|> style="text-align:center"
|  
E 5 
> 12 C52
| 20 C3 
| 15 C2 
| colspan="2" | θ=π/5
|-
| A
1 1 1 1 1 > x2 + y2 + z2
|-
| T1
3 2 cos(θ) 2 cos(3θ) 0 > (Rx, Ry, Rz),
(x, y, z)
>-
| T2
3 2 cos(3θ) 2 cos(θ) 0 >   >-
| G
4 −1 −1 1 0   >-
| H
5 0 0 −1 1 > (2 z2 − x2 − y2,
x2 − y2,
xy, xz, yz)
|-
|}
|-
| Ih
Z2×A5 {| >style="text-align:center"
|  
E 5 
> 12 C52
| 20 C3 
| 15 C2 
> 12 S10 
| 12 S103
| 20 S6 
| 15 σ
| colspan="2" | θ=π/5
|-
| Ag
1 1 1 1 1 1 1 1 1 1 > x2 + y2 + z2
|-
| T1g
3 2 cos(θ) 2 cos(3θ) 0 > 3 2 cos(3θ) 2 cos(θ) 0 > (Rx, Ry, Rz) >-
| T2g
3 2 cos(3θ) 2 cos(θ) 0 > 3 2 cos(θ) 2 cos(3θ) 0 −1   >-
| Gg
4 −1 −1 1 0 4 −1 −1 1 >   >-
| Hg
5 0 0 −1 1 5 0 0 −1 1 > (2 z2 − x2 − y2,
x2 − y2,
xy, xz, yz)
|-
| Au
1 1 1 1 > −1 −1 −1 −1 >   >-
| T1u
3 2 cos(θ) 2 cos(3θ) 0 > −3 −2 cos(3θ) −2 cos(θ) 0 > (x, y, z) >-
| T2u
3 2 cos(3θ) 2 cos(θ) 0 > −3 −2 cos(θ) −2 cos(3θ) 0 >   >-
| Gu
4 −1 −1 1 > −4 1 1 −1 >   >-
| Hu
5 0 0 −1 1 −5 0 0 1 >   >-
|}
|-

Linear (cylindrical) groups

These groups are characterized by having a proper rotation axis C around which the symmetry is invariant to any rotation.
! Point
Group !! Character Table
|-
| C∞v
| align="left" |
{| style="text-align:center"
|   >
E Φ
> ...
| ∞ σv 
| colspan="2" |  
|-
| A1+
1 1 ... 1 > x2 + y2, z2
|-
| A2
1 1 ... −1 z
>  
|-
| E1
2 2 cos(Φ) ... > (x, y), (Rx, Ry) >-
| E2
2 2 cos(2Φ) ... >   2 - y2, xy)
>-
| E3
2 2 cos(3Φ) ... >   >-
| ...
... ... ... ...   |}
|-
| D∞h
| align="left" |
{| sty>e="text-align:center"
|  
E 2 CΦ > ∞ σv  > 2 SΦ ... 2 
> colspan="2" |  
|-
| Σg+
1 1 ... 1 1 1 ... >   2 + y2, z2
>-
| Σg
1 1 > −1 1 1 ... > Rz >-
| Πg
2 2 cos(Φ) ... 0 2 −2 cos(Φ) .. > (Rx, Ry) >-
| Δg
2 2 cos(2Φ) ... 0 2 2 cos(2Φ) .. >   2 − y2, xy)
>-
| ...
... ... ... ... ... ... ... ...   >-
| Σu+
1 1 > 1 −1 −1 ... > z >-
| Σu
1 1 > −1 −1 −1 ... >   >-
| Πu
2 2 cos(Φ) > 0 −2 2 cos(Φ) .. > (x, y) >-
| Δu
2 2 cos(2Φ) > 0 −2 −2 cos(2Φ) .. >   >-
| ...
... ... ... ... ... ... ... ...   >}
|-

See also

  • Linear combination of atomic orbitals molecular orbital method
    Linear combination of atomic orbitals molecular orbital method
    A linear combination of atomic orbitals or LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in quantum chemistry. In quantum mechanics, electron configurations of atoms are described as wavefunctions...

  • Raman spectroscopy
    Raman spectroscopy
    Raman spectroscopy is a spectroscopic technique used to study vibrational, rotational, and other low-frequency modes in a system.It relies on inelastic scattering, or Raman scattering, of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range...

  • Vibrational spectroscopy (molecular vibration)
    Molecular vibration
    A molecular vibration occurs when atoms in a molecule are in periodic motion while the molecule as a whole has constant translational and rotational motion...

  • List of small groups
  • Cubic harmonic
    Cubic harmonic
    In fields like computational chemistry and solid-state and condensed matter physics the so called atomic orbitals, or spin-orbitals, as they appear in textbooks on quantum physics, are often partially replaced by cubic harmonics for a number of reasons....

    s
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK