Lake ecosystem
Encyclopedia

A lentic ecosystem is the ecosystem
Ecosystem
An ecosystem is a biological environment consisting of all the organisms living in a particular area, as well as all the nonliving , physical components of the environment with which the organisms interact, such as air, soil, water and sunlight....

 of a lake, pond or swamp. Included in the environment are the biotic
Biotic component
Biotic components are the living things that shape an ecosystem. A biotic factor is any living component that affects another organism, including animals that consume the organism in question, and the living food that the organism consumes. Each biotic factor needs energy to do work and food for...

 interactions (amongst plants, animals and micro-organisms) and the abiotic interactions (physical and chemical).

Lentic refers to standing or still water. It is derived from the Latin
Latin
Latin is an Italic language originally spoken in Latium and Ancient Rome. It, along with most European languages, is a descendant of the ancient Proto-Indo-European language. Although it is considered a dead language, a number of scholars and members of the Christian clergy speak it fluently, and...

 lentus, which means sluggish. Lentic ecosystems can be compared with lotic ecosystems, which involve flowing terrestrial waters such as rivers and streams. Together, these two fields form the more general study area of freshwater or aquatic ecology.

Lentic systems are diverse, ranging from a small, temporary rainwater pool a few inches deep to Lake Baikal
Lake Baikal
Lake Baikal is the world's oldest at 30 million years old and deepest lake with an average depth of 744.4 metres.Located in the south of the Russian region of Siberia, between Irkutsk Oblast to the northwest and the Buryat Republic to the southeast, it is the most voluminous freshwater lake in the...

, which has a maximum depth of 1740 m. The general distinction between pools/ponds and lakes is vague, but Brown states that ponds and pools have their entire bottom surfaces exposed to light, while lakes do not. In addition, some lakes become seasonally stratified (discussed in more detail below.) Ponds and pools have two regions: the pelagic
Pelagic zone
Any water in a sea or lake that is not close to the bottom or near to the shore can be said to be in the pelagic zone. The word pelagic comes from the Greek πέλαγος or pélagos, which means "open sea". The pelagic zone can be thought of in terms of an imaginary cylinder or water column that goes...

 open water zone, and the benthic zone
Benthic zone
The benthic zone is the ecological region at the lowest level of a body of water such as an ocean or a lake, including the sediment surface and some sub-surface layers. Organisms living in this zone are called benthos. They generally live in close relationship with the substrate bottom; many such...

, which comprises the bottom and shore regions. Since lakes have deep bottom regions not exposed to light, these systems have an additional zone, the profundal. These three areas can have very different abiotic conditions and, hence, host species that are specifically adapted to live there.

Bacteria

Bacteria are present in all regions of lentic waters. Free-living forms are associated with decomposing organic material, biofilm
Biofilm
A biofilm is an aggregate of microorganisms in which cells adhere to each other on a surface. These adherent cells are frequently embedded within a self-produced matrix of extracellular polymeric substance...

 on the surfaces of rocks and plants, suspended in the water column, and in the sediments of the benthic and profundal zones. Other forms are also associated with the guts of lentic animals as parasites or in commensal relationships. Bacteria play an important role in system metabolism through nutrient recycling, which is discussed in the Trophic Relationships section.

Primary producers

Algae, including both phytoplankton
Phytoplankton
Phytoplankton are the autotrophic component of the plankton community. The name comes from the Greek words φυτόν , meaning "plant", and πλαγκτός , meaning "wanderer" or "drifter". Most phytoplankton are too small to be individually seen with the unaided eye...

 and periphyton
Periphyton
Periphyton are a complex mixture of algae, cyanobacteria, heterotrophic microbes, and detritus that are attached to submerged surfaces in most aquatic ecosystems. It serves as an important food source for invertebrates, tadpoles, and some fish. It can also absorb contaminants; removing them from...

 are the principle photosynthesizers in ponds and lakes. Phytoplankton are found drifting in the water column of the pelagic zone. Many species have a higher density than water which should making them sink and end up in the benthos. To combat this, phytoplankton have developed density changing mechanisms, by forming vacuoles and gas vesicles or by changing their shapes to induce drag, slowing their descent. A very sophisticated adaptation utilized by a small number of species is a tail-like flagella that can adjust vertical position and allow movement in any direction. Phytoplankton can also maintain their presence in the water column by being circulated in Langmuir rotations. Periphytic algae, on the other hand, are attached to a substrate. In lakes and ponds, they can cover all benthic surfaces. Both types of plankton are important as food sources and as oxygen providers.

Plants, or macrophyte
Macrophyte
A macrophyte is an aquatic plant that grows in or near water and is either emergent, submergent, or floating. In lakes macrophytes provide cover for fish and substrate for aquatic invertebrates, produce oxygen, and act as food for some fish and wildlife....

s, in lentic systems live in both the benthic and pelagic zones and can be grouped according to their manner of growth: 1) emergent macrophytes = rooted in the substrate but with leaves and flowers extending into the air, 2) floating-leaved macrophytes = rooted in the substrate but with floating leaves, 3) submersed macrophytes = not rooted in the substrate and floating beneath the surface and 4) free-floating macrophytes = not rooted in the substrate and floating on the surface. These various forms of macrophytes generally occur in different areas of the benthic zone, with emergent vegetation nearest the shoreline, then floating-leaved macrophytes, followed by submersed vegetation. Free-floating macrophytes can occur anywhere on the system’s surface.

Aquatic plants are more buoyant than their terrestrial counterparts because freshwater has a higher density than air. This makes structural rigidity unimportant in lakes and ponds (except in the aerial stems and leaves). Thus, the leaves and stems of most aquatic plants use less energy to construct and maintain woody tissue, investing that energy into fast growth instead. In order to contend with stresses induced by wind and waves, plants must be both flexible and tough (Reynolds 2004). Light is the most important factor controlling the distribution of submerged aquatic plants. Macrophytes are sources of food, oxygen, and habitat structure in the benthic zone, but cannot penetrate the depths of the euphotic zone and hence are not found there.

Invertebrates

Zooplankton
Zooplankton
Zooplankton are heterotrophic plankton. Plankton are organisms drifting in oceans, seas, and bodies of fresh water. The word "zooplankton" is derived from the Greek zoon , meaning "animal", and , meaning "wanderer" or "drifter"...

 are tiny animals suspended in the water column. Like phytoplankton, these species have developed mechanisms that keep them from sinking to deeper waters, including drag-inducing body forms and the active flicking of appendages such as antennae or spines. Remaining in the water column may have its advantages in terms of feeding, but this zone’s lack of refugia leaves zooplankton vulnerable to predation. In response, some species, especially Daphnia
Daphnia
Daphnia are small, planktonic crustaceans, between 0.2 and 5 mm in length. Daphnia are members of the order Cladocera, and are one of the several small aquatic crustaceans commonly called water fleas because of their saltatory swimming style...

 sp., make daily vertical migrations in the water column by passively sinking to the darker lower depths during the day and actively moving towards the surface during the night. Also, because conditions in a lentic system can be quite variable across seasons, zooplankton have the ability to switch from laying regular eggs to resting eggs when there is a lack of food, temperatures fall below 2 °C, or if predator abundance is high. These resting eggs have a diapause
Diapause
Diapause is the delay in development in response to regularly and recurring periods of adverse environmental conditions. It is considered to be a physiological state of dormancy with very specific initiating and inhibiting conditions...

, or dormancy period that should allow the zooplankton to encounter conditions that are more favorable to survival when they finally hatch. The invertebrates that inhabit the benthic zone are numerically dominated by small species and are species rich compared to the zooplankton of the open water. They include Crustaceans (e.g. crabs, crayfish, and shrimp), molluscs (e.g. clams and snails), and numerous types of insects. These organisms are mostly found in the areas of macrophyte growth, where the richest resources, highly oxygenated water, and warmest portion of the ecosystem are found. The structurally diverse macrophyte beds are important sites for the accumulation of organic matter, and provide an ideal area for colonization. The sediments and plants also offer a great deal of protection from predatory fishes.

Very few invertebrates are able to inhabit the cold, dark, and oxygen poor profundal zone. Those that can are often red in color due to the presence of large amounts of hemoglobin
Hemoglobin
Hemoglobin is the iron-containing oxygen-transport metalloprotein in the red blood cells of all vertebrates, with the exception of the fish family Channichthyidae, as well as the tissues of some invertebrates...

, which greatly increases the amount of oxygen carried to cells. Because the concentration of oxygen within this zone is low, most species construct tunnels or borrows in which they can hide and make the minimum movements necessary to circulate water through, drawing oxygen to them without expending much energy.

Fishes and other vertebrates

Fishes have a range of physiological tolerances that are dependent upon which species they belong to. They have different lethal temperatures, dissolved oxygen requirements, and spawning needs that are based on their activity levels and behaviors. Because fishes are highly mobile, they are able to deal with unsuitable abiotic factors in one zone by simply moving to another. A detrital feeder in the profundal zone, for example, that finds the oxygen concentration has dropped too low may feed closer to the benthic zone. A fish might also alter its residence during different parts of its life history: hatching in a sediment nest, then moving to the weedy benthic zone to develop in a protected environment with food resources, and finally into the pelagic zone as an adult.

Other vertebrate taxa inhabit lentic systems as well. These include amphibians (e.g. salamanders and frogs), reptiles (e.g. snakes, turtles, and alligators), and a large number of waterfowl species. Most of these vertebrates spend part of their time in terrestrial habitats and thus are not directly affected by abiotic factors in the lake or pond. Many fish species are important as consumers and as prey species to the larger vertebrates mentioned above.

Primary producers

Lentic systems gain most of their energy from photosynthesis performed by aquatic plants and algae. This autochthonous
Indigenous (ecology)
In biogeography, a species is defined as native to a given region or ecosystem if its presence in that region is the result of only natural processes, with no human intervention. Every natural organism has its own natural range of distribution in which it is regarded as native...

 process involves the combination of carbon dioxide, water, and solar energy to produce carbohydrates and dissolved oxygen. Within a lake or pond, the potential rate of photosynthesis generally decreases with depth due to light attenuation. Photosynthesis, however, is often low at the top few millimeters of the surface, likely due to inhibition by ultraviolet light. The exact depth and photosynthetic rate measurements of this curve are system specific and depend upon: 1) the total biomass of photosynthesizing cells, 2) the amount of light attenuating materials and 3) the abundance and frequency range of light absorbing pigments (i.e. chlorophylls) inside of photosynthesizing cells. The energy created by these primary producers is important for the community because it is transferred to higher trophic level
Trophic level
The trophic level of an organism is the position it occupies in a food chain. The word trophic derives from the Greek τροφή referring to food or feeding. A food chain represents a succession of organisms that eat another organism and are, in turn, eaten themselves. The number of steps an organism...

s via consumption.

Bacteria

The vast majority of bacteria in lakes and ponds obtain their energy by decomposing vegetation and animal matter. In the pelagic zone, dead fish and the occasional allochthonous input of litterfall are examples of coarse particulate organic matter (CPOM>1 mm). Bacteria degrade these into fine particulate organic matter (FPOM<1 mm) and then further into usable nutrients. Small organisms such as plankton are also characterized as FPOM. Very low concentrations of nutrients are released during decomposition because the bacteria are utilizing them to build their own biomass. Bacteria, however, are consumed by protozoa
Protozoa
Protozoa are a diverse group of single-cells eukaryotic organisms, many of which are motile. Throughout history, protozoa have been defined as single-cell protists with animal-like behavior, e.g., movement...

, which are in turn consumed by zooplankton, and then further up the trophic level
Trophic level
The trophic level of an organism is the position it occupies in a food chain. The word trophic derives from the Greek τροφή referring to food or feeding. A food chain represents a succession of organisms that eat another organism and are, in turn, eaten themselves. The number of steps an organism...

s. Nutrients, including those that contain carbon and phosphorus, are reintroduced into the water column at any number of points along this food chain via excretion or organism death, making them available again for bacteria. This regeneration cycle is known as the microbial loop
Microbial loop
The microbial loop describes a trophic pathway in the marine microbial food web where dissolved organic carbon is returned to higher trophic levels via the incorporation into bacterial biomass, and coupled with the classic food chain formed by phytoplankton-zooplankton-nekton. The term microbial...

 and is a key component of lentic food webs.

The decomposition of organic materials can continue in the benthic and profundal zones if the matter falls through the water column before being completely digested by the pelagic bacteria. Bacteria are found in the greatest abundance here in sediments, where they are typically 2-1000 times more prevalent than in the water column.

Benthic invertebrates, due to their high level of species richness, have many methods of prey capture. Filter feeder
Filter feeder
Filter feeders are animals that feed by straining suspended matter and food particles from water, typically by passing the water over a specialized filtering structure. Some animals that use this method of feeding are clams, krill, sponges, baleen whales, and many fish and some sharks. Some birds,...

s create currents via siphons or beating cilia, to pull water and its nutritional contents, towards themselves for straining. Grazers use scraping, rasping, and shredding adaptations to feed on periphytic algae and macrophytes. Members of the collector guild browse the sediments, picking out specific particles with raptorial appendages. Deposit feeding invertebrates indiscriminately consume sediment, digesting any organic material it contains. Finally, some invertebrates belong to the predator guild, capturing and consuming living animals. The profundal zone is home to a unique group of filter feeders that use small body movements to draw a current through burrows that they have created in the sediment. This mode of feeding requires the least amount of motion, allowing these species to conserve energy. A small number of invertebrate taxa are predators in the profundal zone. These species are likely from other regions and only come to these depths to feed. The vast majority of invertebrates in this zone are deposit feeders, getting their energy from the surrounding sediments.

Fish

Fish size, mobility, and sensory capabilities allow them to exploit a broad prey base, covering multiple zonation regions. Like invertebrates, fish feeding habits can be categorized into guilds. In the pelagic zone, herbivores graze on periphyton and macrophytes or pick phytoplankton out of the water column. Carnivore
Carnivore
A carnivore meaning 'meat eater' is an organism that derives its energy and nutrient requirements from a diet consisting mainly or exclusively of animal tissue, whether through predation or scavenging...

s include fishes that feed on zooplankton in the water column (zooplanktivores), insects at the water’s surface, on benthic structures, or in the sediment (insectivore
Insectivore
An insectivore is a type of carnivore with a diet that consists chiefly of insects and similar small creatures. An alternate term is entomophage, which also refers to the human practice of eating insects....

s), and those that feed on other fish (piscivore
Piscivore
A piscivore is a carnivorous animal which eats primarily fish. Piscivory was the diet of early tetrapods , insectivory came next, then in time reptiles added herbivory....

s). Fish that consume detritus and gain energy by processing its organic material are called detritivore
Detritivore
Detritivores, also known as detritophages or detritus feeders or detritus eaters or saprophages, are heterotrophs that obtain nutrients by consuming detritus . By doing so, they contribute to decomposition and the nutrient cycles...

s. Omnivores ingest a wide variety of prey, encompassing floral, faunal, and detrital material. Finally, members of the parasitic guild acquire nutrition from a host species, usually another fish or large vertebrate. Fish taxa are flexible in their feeding roles, varying their diets with environmental conditions and prey availability. Many species also undergo a diet shift as they develop. Therefore, it is likely that any single fish occupies multiple feeding guilds within its lifetime.

Lentic food webs

As noted in the previous sections, the lentic biota are linked in complex web of trophic relationships. These organisms can be considered to loosely be associated with specific trophic groups (e.g. primary producers, herbivores, primary carnivores, secondary carnivores, etc.). Scientists have developed several theories in order to understand the mechanisms that control the abundance and diversity within these groups. Very generally, top-down processes dictate that the abundance of prey taxa is dependent upon the actions of consumers from higher trophic level
Trophic level
The trophic level of an organism is the position it occupies in a food chain. The word trophic derives from the Greek τροφή referring to food or feeding. A food chain represents a succession of organisms that eat another organism and are, in turn, eaten themselves. The number of steps an organism...

s. Typically, these processes operate only between two trophic levels, with no effect on the others. In some cases, however, aquatic systems experience a trophic cascade
Trophic cascade
Trophic cascades occur when predators in a food web suppress the abundance of their prey, thereby releasing the next lower trophic level from predation...

; for example, this might occur if primary producers experience less grazing by herbivores because these herbivores are suppressed by carnivores. Bottom-up
Bottom-up
Bottom-up may refer to:* In business development, a bottom-up approach means that the adviser takes the needs and wishes of the would-be entrepreneur as the starting point, rather than a market opportunity ....

 processes are functioning when the abundance or diversity of members of higher trophic levels is dependent upon the availability or quality of resources from lower levels. Finally, a combined regulating theory, bottom-up:top-down, combines the predicted influences of consumers and resource availability. It predicts that trophic levels close to the lowest trophic levels will be most influenced by bottom-up forces, while top-down effects should be strongest at top levels.

Local species richness

The biodiversity of a lentic system increases with the surface area of the lake or pond. This is attributable to the higher likelihood of partly terrestrial species of finding a larger system. Also, because larger systems typically have larger populations, the chance of extinction is decreased. Additional factors, including temperature regime, pH, nutrient availability, habitat complexity, speciation rates, competition, and predation, have been linked to the number of species present within systems.

Succession patterns in plankton communities – the PEG model

Phytoplankton and zooplankton communities in lake systems undergo seasonal succession in relation to nutrient availability, predation, and competition. Sommer et al. described these patterns as part of the Plankton Ecology Group (PEG) model, with 24 statements constructed from the analysis of numerous systems. The following includes a subset of these statements, as explained by Brönmark and Hansson illustrating succession through a single seasonal cycle:

Winter

1. Increased nutrient and light availability result in rapid phytoplankton growth towards the end of winter. The dominant species, such as diatoms, are small and have quick growth capabilities.
2. These plankton are consumed by zooplankton, which become the dominant plankton taxa.

Spring

3. A clear water phase occurs, as phytoplankton populations become depleted due to increased predation by growing numbers of zooplankton.

Summer

4. Zooplankton abundance declines as a result of decreased phytoplankton prey and increased predation by juvenile fishes.

5. With increased nutrient availability and decreased predation from zooplankton, a diverse phytoplankton community develops.

6. As the summer continues, nutrients become depleted in a predictable order: phosphorus, silica, and then nitrogen
Nitrogen
Nitrogen is a chemical element that has the symbol N, atomic number of 7 and atomic mass 14.00674 u. Elemental nitrogen is a colorless, odorless, tasteless, and mostly inert diatomic gas at standard conditions, constituting 78.08% by volume of Earth's atmosphere...

. The abundance of various phytoplankton species varies in relation to their biological need for these nutrients.

7. Small-sized zooplankton become the dominant type of zooplankton because they are less vulnerable to fish predation.

Fall

8. Predation by fishes is reduced due to lower temperatures and zooplankton of all sizes increase in number.

Winter

9. Cold temperatures and decreased light availability result in lower rates of primary production and decreased phytoplankton populations.
10. Reproduction in zooplankton decreases due to lower temperatures and less prey.

The PEG model presents an idealized version of this succession pattern, while natural systems are known for their variation.

Latitudinal patterns

There is a well-documented global pattern that correlates decreasing plant and animal diversity with increasing latitude, that is to say, there are fewer species as one moves towards the poles. The cause of this pattern is one of the greatest puzzles for ecologists today. Theories for its explanation include energy availability, climatic variability, disturbance, competition, etc. Despite this global diversity gradient, this pattern can be weak for freshwater systems compared to global marine and terrestrial systems. This may be related to size, as Hillebrand and Azovsky found that smaller organisms (protozoa and plankton) did not follow the expected trend strongly, while larger species (vertebrates) did. They attributed this to better dispersal ability by smaller organisms, which may result in high distributions globally.

Lake creation

Lakes can be formed in a variety of ways, but the most common are discussed briefly below. The oldest and largest systems are the result of tectonic activities. The rift lakes in Africa, for example are the result of seismic activity along the site of separation of two tectonic plates. Ice-formed lakes are created when glaciers recede, leaving behind abnormalities in the landscape shape that are then filled with water. Finally, oxbow lake
Oxbow lake
An oxbow lake is a U-shaped body of water formed when a wide meander from the main stem of a river is cut off to create a lake. This landform is called an oxbow lake for the distinctive curved shape, named after part of a yoke for oxen. In Australia, an oxbow lake is called a billabong, derived...

s are fluvial
Fluvial
Fluvial is used in geography and Earth science to refer to the processes associated with rivers and streams and the deposits and landforms created by them...

 in origin, resulting when a meandering river bend is pinched off from the main channel.

Natural extinction

All lakes and ponds receive sediment inputs. Since these systems are not really expanding, it is logical to assume that they will become increasingly shallower in depth, eventually becoming wetlands or terrestrial vegetation. The length of this process should depend upon a combination of depth and sedimentation rate. Moss gives the example of Lake Tanganyika
Lake Tanganyika
Lake Tanganyika is an African Great Lake. It is estimated to be the second largest freshwater lake in the world by volume, and the second deepest, after Lake Baikal in Siberia; it is also the world's longest freshwater lake...

, which reaches a depth of 1500 m and has a sedimentation rate of 0.5 mm/yr. Assuming that sedimentation is not influenced by anthropogenic factors, this system should go extinct in approximately 3 million years. Shallow lentic systems might also fill in as swamps encroach inward from the edges. These processes operate on a much shorter timescale, taking hundreds to thousands of years to complete the extinction process.

Acidification

Sulfur dioxide
Sulfur dioxide
Sulfur dioxide is the chemical compound with the formula . It is released by volcanoes and in various industrial processes. Since coal and petroleum often contain sulfur compounds, their combustion generates sulfur dioxide unless the sulfur compounds are removed before burning the fuel...

 and nitrogen oxides are naturally released from volcanoes, organic compounds in the soil, wetlands, and marine systems, but the majority of these compounds come from the combustion of coal, oil, gasoline, and the smelting of ores containing sulfur. These substances dissolve in atmospheric moisture and enter lentic systems as acid rain
Acid rain
Acid rain is a rain or any other form of precipitation that is unusually acidic, meaning that it possesses elevated levels of hydrogen ions . It can have harmful effects on plants, aquatic animals, and infrastructure. Acid rain is caused by emissions of carbon dioxide, sulfur dioxide and nitrogen...

. Lakes and ponds that contain bedrock that is rich in carbonates have a natural buffer, resulting in no alteration of pH. Systems without this bedrock, however, are very sensitive to acid inputs because they have a low neutralizing capacity, resulting in pH declines even with only small inputs of acid. At a pH of 5-6 algal species diversity and biomass decrease considerably, leading to an increase in water transparency – a characteristic feature of acidified lakes. As the pH continues lower, all fauna becomes less diverse. The most significant feature is the disruption of fish reproduction. Thus, the population is eventually composed of few, old individuals that eventually die and leave the systems without fishes. Acid rain has been especially harmful to lakes in Scandinavia
Scandinavia
Scandinavia is a cultural, historical and ethno-linguistic region in northern Europe that includes the three kingdoms of Denmark, Norway and Sweden, characterized by their common ethno-cultural heritage and language. Modern Norway and Sweden proper are situated on the Scandinavian Peninsula,...

, western Scotland
Scotland
Scotland is a country that is part of the United Kingdom. Occupying the northern third of the island of Great Britain, it shares a border with England to the south and is bounded by the North Sea to the east, the Atlantic Ocean to the north and west, and the North Channel and Irish Sea to the...

, west Wales
Wales
Wales is a country that is part of the United Kingdom and the island of Great Britain, bordered by England to its east and the Atlantic Ocean and Irish Sea to its west. It has a population of three million, and a total area of 20,779 km²...

 and the north eastern United States.

Eutrophication

Eutrophic
Eutrophication
Eutrophication or more precisely hypertrophication, is the movement of a body of water′s trophic status in the direction of increasing plant biomass, by the addition of artificial or natural substances, such as nitrates and phosphates, through fertilizers or sewage, to an aquatic system...

 systems contain a high concentration of phosphorus (~30+µg/L), nitrogen (~1500+µg/L), or both. Phosphorus enters lentic waters from wastewater treatment
Wastewater Treatment
Wastewater treatment may refer to:* Sewage treatment* Industrial wastewater treatment...

 effluents, discharge from raw sewage, or from runoff of farmland. Nitrogen mostly comes from agricultural fertilizers from runoff or leaching and subsequent groundwater flow. This increase in nutrients required for primary producers results in a massive increase of phytoplankton growth, termed a plankton bloom. This bloom decreases water transparency, leading to the loss of submerged plants. The resultant reduction in habitat structure has negative impacts on the species’ that utilize it for spawning, maturation and general survival. Additionally, the large number of short-lived phytoplankton result in a massive amount of dead biomass settling into the sediment. Bacteria need large amounts of oxygen to decompose this material, reducing the oxygen concentration of the water. This is especially pronounced in stratified lakes when the thermocline prevents oxygen rich water from the surface to mix with lower levels. Low or anoxic conditions preclude the existence of many taxa that are not physiologically tolerant of these conditions.

Invasive species

Invasive species
Invasive species
"Invasive species", or invasive exotics, is a nomenclature term and categorization phrase used for flora and fauna, and for specific restoration-preservation processes in native habitats, with several definitions....

 have been introduced to lentic systems through both purposeful events (e.g. stocking game and food species) as well as unintentional events (e.g. in ballast water). These organisms can affect natives via competition for prey or habitat, predation, habitat alteration, hybridization, or the introduction of harmful diseases and parasites. With regard to native species, invaders may cause changes in size and age structure, distribution, density, population growth, and may even drive populations to extinction. Examples of prominent invaders of lentic systems include the zebra mussel
Zebra mussel
The zebra mussel, Dreissena polymorpha, is a small freshwater mussel. This species was originally native to the lakes of southeast Russia being first described in 1769 by a German zoologist Peter Simon Pallas in the Ural, Volga and Dnieper rivers. They are still found nearby, as Pontic and Caspian...

 and sea lamprey
Sea lamprey
The sea lamprey is a parasitic lamprey found on the Atlantic coasts of Europe and North America, in the western Mediterranean Sea, and in the Great Lakes. It is brown, gray, or black on its back and white or gray on the underside and can grow up to 90 cm long. Sea lampreys prey on a wide...

 in the Great Lakes.

See also

  • United States Environmental Protection Agency - Great Lakes Ecosystems
  • United States Environmental Protection Agency - Limnology Primer (PDF file)
  • Freshwater environmental quality parameters‎
  • Limnology
    Limnology
    Limnology , also called freshwater science, is the study of inland waters. It is often regarded as a division of ecology or environmental science. It covers the biological, chemical, physical, geological, and other attributes of all inland waters...

  • Lake aeration
  • Man-made lentic water bodies of Maharashtra
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK