Chitinozoa
Encyclopedia
Chitinozoa are a taxon
of flask
-shaped, organic
walled marine
microfossils produced by an as yet unknown animal. Common from the Ordovician
to Devonian
periods (i.e. the mid-Paleozoic), the millimetre-scale organisms are abundant in almost all types of marine sediment across the globe. This wide distribution, and their rapid pace of evolution, makes them valuable biostratigraphic markers.
Their bizarre form has made classification and ecological reconstruction difficult. Since their discovery in 1931, suggestions of protist
, plant
, and fungal
affinities have all been entertained. The organisms have been better understood as improvements in microscopy facilitated the study of their fine structure, and there is mounting evidence to suggest that they represent either the eggs
or juvenile stage of a marine animal.
The ecology of chitinozoa is also open to speculation; some may have floated in the water column, where others may have attached themselves to other organisms. Most species were particular about their living conditions, and tend to be most common in specific paleoenvironments. Their abundance also varied with the seasons.
s. They appear dark to almost opaque when viewed under an optical microscope. External ornamentation is often preserved on the surface of the fossils, in the form of hairs, loops or protrusions, which are sometimes as large as the chamber itself. The range and complexity of ornament increased with time, against a backdrop of decreasing organism size. The earliest Ordovician species were large and smooth-walled; by the mid-Ordovician a large and expanding variety of ornament, and of hollow appendages, was evident. While shorter appendages are generally solid, larger protrusions tend to be hollow, with some of the largest displaying a spongy internal structure. However, even hollow appendages leave no mark on the inner wall of the organisms: this may suggest that they were secreted or attached from the outside. There is some debate about the number of layers present in the organisms' walls: up to three layers have been reported, with the internal wall often ornamented; some specimens only appear to display one. The multitude of walls may indeed reflect the construction of the organism, but could be a result of the preservational process
.
"Immature" or juvenile examples of Chitinozoans have not been found; this may suggest that they didn't "grow", that they were moult
s (unlikely), or that the fossilisable parts of the organism only formed after the developmental process was complete.
Most chitinozoans are found as isolated fossils, but chains of multiple tests, joined from aperture to base, have been reported from all genera
. Very long chains tend to take the form of a spring. Occasionally, clusters or condensed chains are found, packed in an organic "cocoon".
, spanning seven genera, based on morphological
grounds. Further genera were identified, at first on an annual basis, as time progressed. Since its publication in 1931, Eisenack's original classification has been much honed by these additional discoveries, as well as advances in microscopy. The advent of the scanning electron microscope
in the 1970s allowed the improved detection of surface ornamentation which is hugely important in identification - as can be appreciated by a comparison of the images on this page. Even the light microscope image here is of far greater quality than could have been achieved earlier in the century, using poorly preserved specimens and less advanced microscopes.
The original three families proposed by Eisenack represented the best classification possible with available data, based largely on the presence or absence of chains of organisms and the chamber's shape. The orders were subsequently revised to conform better to Linnean taxonomy, placing related organisms more closely together. This was made possible as scientific advances permitted the identification of distinctive traits in organisms across Eisenack's groups. Features of the base and neck, the presence of spines, and perforations or connections are now considered the most useful diagnostic features.
, since similar chitin-based tests were produced by the extant members of this group. However, the chemistry of these tests differs from that of the fossils, and modern Testacea are almost exclusively fresh-water - an extremely different environment. Within a year, he had abandoned this initial idea.
s are colonial organic walled fossils which also occurred from the Ordovician to the Devonian; only part of their life cycle is known and it is not clear how they reproduced. It has been suggested that the Chitinozoa may represent the pre-sicula stages of graptolites - the period between the colony's sexual reproduction, and the formation of a new colony. This hypothesis appears to be supported by the co-occurrence of graptolite and chitinozoan fossils, whose abundances appear to mirror one another. The similar chemical composition of the fossils has been seized by both sides of the argument. Proponents suggest that the use of the same chemical framework is an indicator that the two may be related. However, this factor means that situations favouring the preservation of one will also tend to preserve the other - and the preparation techniques used to extract the fossils will also favour or disfavour the two groups equally. Therefore, the apparent co-occurrence of the two fossils may merely be an artifact of their similar composition. The hypothesis struggles to explain the continuing abundance of chitinozoans after the middle Devonian, when graptolites became increasingly rare.
There are several arguments behind an association of the chitinozoans with annelid
s or gastropods, and it is not impossible that the chitinozoans are a convergent phenomenon laid by both groups. In fact, the spirally coiled nature of chitinozoan chains has been used to suggest that they were laid by a spirally coiled organism, such as the gastropods; were this inference true, uncoiled chains could be to be attributed to the (straight) annelid worms or other organisms.
Recent excavations of the Soom Shale
, an Ordovician konservat-lagerstätten in South Africa
, have yielded chitinozoans alongside a wide range of other organisms. It has been suggested that if whatever organism created the Chitinozoa was fossilisable, it would be present in the Soom biota — from which gastropods and graptolites are notable in their absence. Most organisms present in the shale can be ruled out for a variety of reasons, but polychaete
worms, Promissum
conodont
s and orthocone cephalopod
s remain as likely candidates. However, further evidence connecting chitinozoans to any of these groups is circumstantial at best.
The fossils' restriction to marine sediments can be taken as sound evidence that the organisms dwelt in the Palæozoic seas - which presents three main modes of life: — living within the sediment - the "burrowers" — dwelling upon the sea floor, perhaps anchored in place - the "sitters" — free-floating in the water column - the "drifters"
An infaunal mode of life can be quickly ruled out, as the fossils are sometimes found in alignment with the depositing current; as nothing attached them to the bottom, they must have fallen from the water column.
The ornament of the chitinozoans may cast light on the question. Whilst in some cases a defensive role - by making the vessel larger, and thus less digestible by would-be predators - seems probable, it is not impossible that the protrusions may have anchored the organisms to the sea floor. However, their low-density construction makes this unlikely: perhaps more plausible is that they acted to attach to other organisms. Longer spines also make the organisms more buoyant, by decreasing their Rayleigh number
(i.e. increasing the relative importance of water's viscosity) — it is therefore possible that at least the long-spined chitinozoans were planktonic "floaters". On the other hand, the walls of some chitinozoans were probably too thick and dense to allow them to float.
Whilst little is known about their interactions with other organisms, small holes in the tests of some chitinozoans are evidence that they were hosts to some parasites. Although some forms have been reinterpreted as "pock-marks" caused by the disintegration of the diagenetic mineral pyrite
, the clustering of cylindrical holes around the chamber — where the flesh of the organism was likely to be concentrated — is evidence for a biological cause.
Corals in Gotland
with daily growth markings have been found in association with abundant chitinozoans, which allow the detection of seasonal variation in chitinozoan abundance. A peak in abundance during the late autumn months is observed, with the maxima for different species occurring on different dates. Such a pattern is also observed in modern-day tropical zooplankton. The diversity of living habits is also reflected by the depth of water and distance from the shore. Different species are found in highest abundance at different depths. While deeper waters around 40 km from the shoreline are generally the optimal environment, some species appear to prefer very shallow water. On the whole, chitinozoans are less abundant in turbulent waters or reef environments, implying an aversion to such regimes when alive, if it is not an effect of sedimentary focusing. Chitinozoans also become rarer in shallower water - although the reverse is not necessarily true. They cannot survive freshwater input.
s in biostratigraphy
during the Ordovician
, Silurian
and Devonian
periods. Their utility is due to the rapidity of their morphological evolution, their abundance — the most productive samples bearing almost a thousand tests per gram — and the easy identification (due largely to the large variation in shapes) and short lifetimes (<10 million years) of most species. They are also widely distributed and appear in a variety of marine depositional settings
, making correlation easier; better still, they can often be recognised in even quite strongly metamorphosed rocks. However, convergence of morphological form to similar environments sometimes leads to the mistaken identification of a species in several areas separated by vast differences in space and time, but sharing a similar depositional environment; clearly, this can cause major problems if the organisms are interpreted as being the same species. Aside from the acritarch
s, chitinozoans were the only reliable means of correlating palæozoic units until the late 1960s, when the detailed study of conodont
s and graptolite
s fully unleashed their stratigraphic potential.
Taxon
|thumb|270px|[[African elephants]] form a widely-accepted taxon, the [[genus]] LoxodontaA taxon is a group of organisms, which a taxonomist adjudges to be a unit. Usually a taxon is given a name and a rank, although neither is a requirement...
of flask
Laboratory flask
Laboratory flasks are vessels which fall into the category of laboratory equipment known as glassware. In laboratory and other scientific settings, they are usually referred to simply as flasks...
-shaped, organic
Organic matter
Organic matter is matter that has come from a once-living organism; is capable of decay, or the product of decay; or is composed of organic compounds...
walled marine
Marine biology
Marine biology is the scientific study of organisms in the ocean or other marine or brackish bodies of water. Given that in biology many phyla, families and genera have some species that live in the sea and others that live on land, marine biology classifies species based on the environment rather...
microfossils produced by an as yet unknown animal. Common from the Ordovician
Ordovician
The Ordovician is a geologic period and system, the second of six of the Paleozoic Era, and covers the time between 488.3±1.7 to 443.7±1.5 million years ago . It follows the Cambrian Period and is followed by the Silurian Period...
to Devonian
Devonian
The Devonian is a geologic period and system of the Paleozoic Era spanning from the end of the Silurian Period, about 416.0 ± 2.8 Mya , to the beginning of the Carboniferous Period, about 359.2 ± 2.5 Mya...
periods (i.e. the mid-Paleozoic), the millimetre-scale organisms are abundant in almost all types of marine sediment across the globe. This wide distribution, and their rapid pace of evolution, makes them valuable biostratigraphic markers.
Their bizarre form has made classification and ecological reconstruction difficult. Since their discovery in 1931, suggestions of protist
Protist
Protists are a diverse group of eukaryotic microorganisms. Historically, protists were treated as the kingdom Protista, which includes mostly unicellular organisms that do not fit into the other kingdoms, but this group is contested in modern taxonomy...
, plant
Plant
Plants are living organisms belonging to the kingdom Plantae. Precise definitions of the kingdom vary, but as the term is used here, plants include familiar organisms such as trees, flowers, herbs, bushes, grasses, vines, ferns, mosses, and green algae. The group is also called green plants or...
, and fungal
Fungus
A fungus is a member of a large group of eukaryotic organisms that includes microorganisms such as yeasts and molds , as well as the more familiar mushrooms. These organisms are classified as a kingdom, Fungi, which is separate from plants, animals, and bacteria...
affinities have all been entertained. The organisms have been better understood as improvements in microscopy facilitated the study of their fine structure, and there is mounting evidence to suggest that they represent either the eggs
Egg (biology)
An egg is an organic vessel in which an embryo first begins to develop. In most birds, reptiles, insects, molluscs, fish, and monotremes, an egg is the zygote, resulting from fertilization of the ovum, which is expelled from the body and permitted to develop outside the body until the developing...
or juvenile stage of a marine animal.
The ecology of chitinozoa is also open to speculation; some may have floated in the water column, where others may have attached themselves to other organisms. Most species were particular about their living conditions, and tend to be most common in specific paleoenvironments. Their abundance also varied with the seasons.
Appearance
Chitinozoa range in length from around 50 to 2000 micrometreMicrometre
A micrometer , is by definition 1×10-6 of a meter .In plain English, it means one-millionth of a meter . Its unit symbol in the International System of Units is μm...
s. They appear dark to almost opaque when viewed under an optical microscope. External ornamentation is often preserved on the surface of the fossils, in the form of hairs, loops or protrusions, which are sometimes as large as the chamber itself. The range and complexity of ornament increased with time, against a backdrop of decreasing organism size. The earliest Ordovician species were large and smooth-walled; by the mid-Ordovician a large and expanding variety of ornament, and of hollow appendages, was evident. While shorter appendages are generally solid, larger protrusions tend to be hollow, with some of the largest displaying a spongy internal structure. However, even hollow appendages leave no mark on the inner wall of the organisms: this may suggest that they were secreted or attached from the outside. There is some debate about the number of layers present in the organisms' walls: up to three layers have been reported, with the internal wall often ornamented; some specimens only appear to display one. The multitude of walls may indeed reflect the construction of the organism, but could be a result of the preservational process
Taphonomy
Taphonomy is the study of decaying organisms over time and how they become fossilized . The term taphonomy was introduced to paleontology in 1940 by Russian scientist Ivan Efremov to describe the study of the transition of remains, parts, or products of organisms, from the biosphere, to the...
.
"Immature" or juvenile examples of Chitinozoans have not been found; this may suggest that they didn't "grow", that they were moult
Moult
In biology, moulting or molting , also known as sloughing, shedding, or for some species, ecdysis, is the manner in which an animal routinely casts off a part of its body , either at specific times of year, or at specific points in its life cycle.Moulting can involve the epidermis , pelage...
s (unlikely), or that the fossilisable parts of the organism only formed after the developmental process was complete.
Most chitinozoans are found as isolated fossils, but chains of multiple tests, joined from aperture to base, have been reported from all genera
Genus
In biology, a genus is a low-level taxonomic rank used in the biological classification of living and fossil organisms, which is an example of definition by genus and differentia...
. Very long chains tend to take the form of a spring. Occasionally, clusters or condensed chains are found, packed in an organic "cocoon".
Classification
Alfred Eisenack's original description of the Chitinozoans placed them in three familiesFamily (biology)
In biological classification, family is* a taxonomic rank. Other well-known ranks are life, domain, kingdom, phylum, class, order, genus, and species, with family fitting between order and genus. As for the other well-known ranks, there is the option of an immediately lower rank, indicated by the...
, spanning seven genera, based on morphological
Morphology (biology)
In biology, morphology is a branch of bioscience dealing with the study of the form and structure of organisms and their specific structural features....
grounds. Further genera were identified, at first on an annual basis, as time progressed. Since its publication in 1931, Eisenack's original classification has been much honed by these additional discoveries, as well as advances in microscopy. The advent of the scanning electron microscope
Scanning electron microscope
A scanning electron microscope is a type of electron microscope that images a sample by scanning it with a high-energy beam of electrons in a raster scan pattern...
in the 1970s allowed the improved detection of surface ornamentation which is hugely important in identification - as can be appreciated by a comparison of the images on this page. Even the light microscope image here is of far greater quality than could have been achieved earlier in the century, using poorly preserved specimens and less advanced microscopes.
The original three families proposed by Eisenack represented the best classification possible with available data, based largely on the presence or absence of chains of organisms and the chamber's shape. The orders were subsequently revised to conform better to Linnean taxonomy, placing related organisms more closely together. This was made possible as scientific advances permitted the identification of distinctive traits in organisms across Eisenack's groups. Features of the base and neck, the presence of spines, and perforations or connections are now considered the most useful diagnostic features.
Relationships
What were the Chitinozoans? This question has been asked since their discovery in 1930, and we are little closer to an answer today. In order to address the issue, a combination of ecological, taphonomical and practical factors have to be considered.Amoebæ
Eisenack's original guess was that the Chitinozoa were of the rhizopod order TestaceaTestacea
Testacea is an order of rhizopod, which consists of testate amoeboid organisms....
, since similar chitin-based tests were produced by the extant members of this group. However, the chemistry of these tests differs from that of the fossils, and modern Testacea are almost exclusively fresh-water - an extremely different environment. Within a year, he had abandoned this initial idea.
Photosynthesisers
Arguments put forwards by Obut (1973) proposed that the organisms were one-celled "plants" similar to the dinoflagellates, which would now be grouped into the chromalveolata. However, as mentioned previously, spines and appendages are attached from the exterior of the vessel: only animals have the cellular machinery necessary to perform such a feat. Further, no analogy for the cocoon envelope can be found in this kingdom.Young graptolites
The graptoliteGraptolite
Graptolithina is a class in the animal phylum Hemichordata, the members of which are known as Graptolites. Graptolites are fossil colonial animals known chiefly from the Upper Cambrian through the Lower Carboniferous...
s are colonial organic walled fossils which also occurred from the Ordovician to the Devonian; only part of their life cycle is known and it is not clear how they reproduced. It has been suggested that the Chitinozoa may represent the pre-sicula stages of graptolites - the period between the colony's sexual reproduction, and the formation of a new colony. This hypothesis appears to be supported by the co-occurrence of graptolite and chitinozoan fossils, whose abundances appear to mirror one another. The similar chemical composition of the fossils has been seized by both sides of the argument. Proponents suggest that the use of the same chemical framework is an indicator that the two may be related. However, this factor means that situations favouring the preservation of one will also tend to preserve the other - and the preparation techniques used to extract the fossils will also favour or disfavour the two groups equally. Therefore, the apparent co-occurrence of the two fossils may merely be an artifact of their similar composition. The hypothesis struggles to explain the continuing abundance of chitinozoans after the middle Devonian, when graptolites became increasingly rare.
Eggs
The test of the Chitinozoa was fixed - there was no scope for any parts of it to move or rotate. This makes it seem likely that the tests were containers, to protect whatever was inside - whether that was a "hibernating" or encysted organism, or a clutch of hatching eggs.There are several arguments behind an association of the chitinozoans with annelid
Annelid
The annelids , formally called Annelida , are a large phylum of segmented worms, with over 17,000 modern species including ragworms, earthworms and leeches...
s or gastropods, and it is not impossible that the chitinozoans are a convergent phenomenon laid by both groups. In fact, the spirally coiled nature of chitinozoan chains has been used to suggest that they were laid by a spirally coiled organism, such as the gastropods; were this inference true, uncoiled chains could be to be attributed to the (straight) annelid worms or other organisms.
Recent excavations of the Soom Shale
Soom Shale
The Soom Shale is a member of the Late Ordovician Cedarberg Formation in South Africa, renowned for its remarkable preservation of soft-tissue in fossil material....
, an Ordovician konservat-lagerstätten in South Africa
South Africa
The Republic of South Africa is a country in southern Africa. Located at the southern tip of Africa, it is divided into nine provinces, with of coastline on the Atlantic and Indian oceans...
, have yielded chitinozoans alongside a wide range of other organisms. It has been suggested that if whatever organism created the Chitinozoa was fossilisable, it would be present in the Soom biota — from which gastropods and graptolites are notable in their absence. Most organisms present in the shale can be ruled out for a variety of reasons, but polychaete
Polychaete
The Polychaeta or polychaetes are a class of annelid worms, generally marine. Each body segment has a pair of fleshy protrusions called parapodia that bear many bristles, called chaetae, which are made of chitin. Indeed, polychaetes are sometimes referred to as bristle worms. More than 10,000...
worms, Promissum
Promissum
Promissum is an extinct genus of primitive chordate that lived in the Ordovician period, about 500 million years ago.A conodont, Promissum had a primitive mouth under its eyes with mineralized teeth, which are both typical for conodonts, and also a primitive backbone...
conodont
Conodont
Conodonts are extinct chordates resembling eels, classified in the class Conodonta. For many years, they were known only from tooth-like microfossils now called conodont elements, found in isolation. Knowledge about soft tissues remains relatively sparse to this day...
s and orthocone cephalopod
Cephalopod
A cephalopod is any member of the molluscan class Cephalopoda . These exclusively marine animals are characterized by bilateral body symmetry, a prominent head, and a set of arms or tentacles modified from the primitive molluscan foot...
s remain as likely candidates. However, further evidence connecting chitinozoans to any of these groups is circumstantial at best.
Ecology
It is not immediately clear what mode of life was occupied by these improbably shaped fossils, and an answer only becomes apparent after following several lines of reasoning.The fossils' restriction to marine sediments can be taken as sound evidence that the organisms dwelt in the Palæozoic seas - which presents three main modes of life: — living within the sediment - the "burrowers" — dwelling upon the sea floor, perhaps anchored in place - the "sitters" — free-floating in the water column - the "drifters"
An infaunal mode of life can be quickly ruled out, as the fossils are sometimes found in alignment with the depositing current; as nothing attached them to the bottom, they must have fallen from the water column.
The ornament of the chitinozoans may cast light on the question. Whilst in some cases a defensive role - by making the vessel larger, and thus less digestible by would-be predators - seems probable, it is not impossible that the protrusions may have anchored the organisms to the sea floor. However, their low-density construction makes this unlikely: perhaps more plausible is that they acted to attach to other organisms. Longer spines also make the organisms more buoyant, by decreasing their Rayleigh number
Rayleigh number
In fluid mechanics, the Rayleigh number for a fluid is a dimensionless number associated with buoyancy driven flow...
(i.e. increasing the relative importance of water's viscosity) — it is therefore possible that at least the long-spined chitinozoans were planktonic "floaters". On the other hand, the walls of some chitinozoans were probably too thick and dense to allow them to float.
Whilst little is known about their interactions with other organisms, small holes in the tests of some chitinozoans are evidence that they were hosts to some parasites. Although some forms have been reinterpreted as "pock-marks" caused by the disintegration of the diagenetic mineral pyrite
Pyrite
The mineral pyrite, or iron pyrite, is an iron sulfide with the formula FeS2. This mineral's metallic luster and pale-to-normal, brass-yellow hue have earned it the nickname fool's gold because of its resemblance to gold...
, the clustering of cylindrical holes around the chamber — where the flesh of the organism was likely to be concentrated — is evidence for a biological cause.
Corals in Gotland
Gotland
Gotland is a county, province, municipality and diocese of Sweden; it is Sweden's largest island and the largest island in the Baltic Sea. At 3,140 square kilometers in area, the region makes up less than one percent of Sweden's total land area...
with daily growth markings have been found in association with abundant chitinozoans, which allow the detection of seasonal variation in chitinozoan abundance. A peak in abundance during the late autumn months is observed, with the maxima for different species occurring on different dates. Such a pattern is also observed in modern-day tropical zooplankton. The diversity of living habits is also reflected by the depth of water and distance from the shore. Different species are found in highest abundance at different depths. While deeper waters around 40 km from the shoreline are generally the optimal environment, some species appear to prefer very shallow water. On the whole, chitinozoans are less abundant in turbulent waters or reef environments, implying an aversion to such regimes when alive, if it is not an effect of sedimentary focusing. Chitinozoans also become rarer in shallower water - although the reverse is not necessarily true. They cannot survive freshwater input.
Stratigraphic application
Since Alfred Eisenack first recognised and named the group in 1930, the Chitinozoa have proven incredibly useful as a stratigraphic markerIndex fossil
Index fossils are fossils used to define and identify geologic periods . They work on the premise that, although different sediments may look different depending on the conditions under which they were laid down, they may include the remains of the same species of fossil...
s in biostratigraphy
Biostratigraphy
Biostratigraphy is the branch of stratigraphy which focuses on correlating and assigning relative ages of rock strata by using the fossil assemblages contained within them. Usually the aim is correlation, demonstrating that a particular horizon in one geological section represents the same period...
during the Ordovician
Ordovician
The Ordovician is a geologic period and system, the second of six of the Paleozoic Era, and covers the time between 488.3±1.7 to 443.7±1.5 million years ago . It follows the Cambrian Period and is followed by the Silurian Period...
, Silurian
Silurian
The Silurian is a geologic period and system that extends from the end of the Ordovician Period, about 443.7 ± 1.5 Mya , to the beginning of the Devonian Period, about 416.0 ± 2.8 Mya . As with other geologic periods, the rock beds that define the period's start and end are well identified, but the...
and Devonian
Devonian
The Devonian is a geologic period and system of the Paleozoic Era spanning from the end of the Silurian Period, about 416.0 ± 2.8 Mya , to the beginning of the Carboniferous Period, about 359.2 ± 2.5 Mya...
periods. Their utility is due to the rapidity of their morphological evolution, their abundance — the most productive samples bearing almost a thousand tests per gram — and the easy identification (due largely to the large variation in shapes) and short lifetimes (<10 million years) of most species. They are also widely distributed and appear in a variety of marine depositional settings
Facies
In geology, facies are a body of rock with specified characteristics. Ideally, a facies is a distinctive rock unit that forms under certain conditions of sedimentation, reflecting a particular process or environment....
, making correlation easier; better still, they can often be recognised in even quite strongly metamorphosed rocks. However, convergence of morphological form to similar environments sometimes leads to the mistaken identification of a species in several areas separated by vast differences in space and time, but sharing a similar depositional environment; clearly, this can cause major problems if the organisms are interpreted as being the same species. Aside from the acritarch
Acritarch
Acritarchs are small organic fossils, present from approximately to the present. Their diversity reflects major ecological events such as the appearance of predation and the Cambrian explosion.-Definition:In general, any small, non-acid soluble Acritarchs are small organic fossils, present from...
s, chitinozoans were the only reliable means of correlating palæozoic units until the late 1960s, when the detailed study of conodont
Conodont
Conodonts are extinct chordates resembling eels, classified in the class Conodonta. For many years, they were known only from tooth-like microfossils now called conodont elements, found in isolation. Knowledge about soft tissues remains relatively sparse to this day...
s and graptolite
Graptolite
Graptolithina is a class in the animal phylum Hemichordata, the members of which are known as Graptolites. Graptolites are fossil colonial animals known chiefly from the Upper Cambrian through the Lower Carboniferous...
s fully unleashed their stratigraphic potential.
External links
- Commission Internationale de Microflore du Paléozoique (CIMP), international commission for Palaeozoic palynology.