Canadian system of soil classification
Encyclopedia
The Canadian system of soil classification is more closely related to the American system
than any other. They differ in several ways. The Canadian system is designed to cover only Canadian soils. The Canadian system dispenses with a sub-order hierarchical level. Solonetzic and Gleysolic soils are differentiated at the order level. The American system is designed so that surface tillage cannot result in a change in classification.
Canada's first independent taxonomic system of soil classification was introduced in 1955. Prior to 1955, systems of classification used in Canada were strongly based on methods being applied in the United States. However, the U.S. system was based on environmental conditions common to the United States. Canadian soil scientists required a new method of soil classification that focused on pedogenic processes in cool climatic environments.
Like the US system, the Canadian System of Soil Classification differentiates soil types on the basis of measured properties of the profile and uses a hierarchical scheme to classify soils from general to specific. The most recent version of the classification system has five categories in its hierarchical structure. From general to specific, the major categories in this system are: orders, great groups, subgroups, families, and series. At its most general level, the Canadian System recognizes nine different soil orders:
Classification involves arranging individual units with similar characteristics into groups. Soils do not occur as discrete entities; thus the unit of measurement for soil is not obvious. This unit of measurement is called the pedon, defined as a 3-dimensional body, commonly with lateral dimensions of 1 m and depth of 1 to 2 m. A vertical section of a pedon displays the more-or-less horizontal layers (horizons
) developed by the action of soil-forming processes. Soil classification
facilitates the organization and communication of information about soils, as well as the understanding of relationships between soils and environmental factors.
The land area of Canada (excluding inland waters) is approximately 9 180 000 km2, of which about 1 375 000 km2 (15%) is rock land. The remainder is classified according to the Canadian system of soil classification, which groups soils into sets of classes at 5 levels or categories from most general to most specific: order, great group, subgroup, family, series. There are 10 orders and several thousand series. Thus the system makes it possible to consider soils at different levels of specificity. Soil classes are defined as specifically as possible to permit uniformity of classification. Limits between classes are arbitrary as there are few sharp divisions of the soil continuum in nature. Differences in soils are the result of the interaction of many factors: climate, organisms, parent material, relief and time. The soil classification system changes as knowledge grows through soil mapping and research in Canada and elsewhere.
(permanently frozen material) within one metre of the surface (2 m if the soil is strongly cryoturbated; i.e., disturbed by frost action). As permafrost is a barrier to roots and water, the active layer (seasonally thawed material) above it may become a saturated, semifluid material in spring. Commonly the permafrost layer near the surface contains abundant ice. Melting of ice and frozen materials, resulting from disturbance of the surface vegetation (boreal forest or tundra), may cause slumping of the soil and disruption of roads, pipelines and buildings. Cryosolic soils, occupying about 3 672 000 km2 (about 40%) of Canada's land area, are dominant in much of the Yukon
, Northwest Territories
and Nunavut
and occur in northern areas of all but the Atlantic provinces (excluding Labrador
).
The order and its 3 great groups were defined in 1973, after soil and terrain surveys in the Mackenzie Valley yielded new knowledge about the properties, genesis and significance of these soils. Turbic Cryosols have a patterned surface (hummocks, stone nets, etc.) and mixed horizons or other evidence of cryoturbation. Static Cryosols lack marked evidence of cryoturbation; they are associated with sandy or gravelly materials. Organic Cryosols are composed dominantly of organic materials (e.g., peat). Because organic material acts as an insulator, Organic Cryosols occur farther south than the boundary of continuous permafrost.
, Ontario
and northern Alberta
, smaller areas in other provinces and territories.
Organic soils are subdivided into 4 great groups. Fibrisols, common in Canada, consist predominantly of relatively undecomposed organic material with clearly visible plant fragments; resistant fibres account for over 40% by volume. Most soils derived from Sphagnum mosses are Fibrisols. Mesisols are more highly decomposed and contain less fibrous material than Fibrisols (10-40% by volume). Humisols consist mainly of humified organic materials and may contain up to 10% fibre by volume. Folisols consist mainly of thick deposits of forest litter overlying bedrock, fractured bedrock or unconsolidated material. They occur commonly in wet mountainous areas of coastal British Columbia
.
of Saskatchewan
, Manitoba
and Alberta
and occupy less than 1% of the land area of Canada.
The order and its 2 great groups were recognized in the Canadian system in the 1990s after extensive studies of pedons in the Great Plains. The Vertisol great group has a light-coloured A horizon that is not readily distinguishable, and the Humid Vertisol great group has a dark-coloured A horizon enriched in organic matter that is clearly distinguishable from the underlying soil material.
Podzolic soils occupy about 1 429 000 km2 (15.6%) of Canada's land area and are dominant in vast areas of the humid Appalachian and Canadian Shield
regions and in the humid coastal region of British Columbia
. They are divided among 3 great groups on the basis of the kind of Podzolic B horizon. Humic Podzols have a dark B horizon with a low iron content. They occur mainly in wet sites under humid climates and are much less common than other Podzolic soils.
Ferro-Humic Podzols have a dark reddish brown or black B horizon containing at least 5% organic carbon and appreciable amounts (often 2% or more) of aluminum and iron in organic complexes. They occur commonly in the more humid parts of the area of Podzolic soils; e.g., coastal British Columbia and parts of Newfoundland and southern Quebec
. Humo-Ferric Podzols, the most common Podzolic soils in Canada, have a reddish brown B horizon containing less than 5% organic carbon associated with aluminum and iron complexes.
Three great groups of Gleysolic soils are defined. Humic Gleysols have a dark A horizon enriched in organic matter. Gleysols lack such a horizon. Luvic Gleysols have a leached (Ae) horizon underlain by a B horizon in which the clay has accumulated; they may have a dark surface horizon.
The 4 great groups of Solonetzic soils are based on properties reflecting the degree of leaching. Solonetz soils have a dark, organic-matter-enriched A horizon overlying the Solonetzic B, which occurs usually at a depth of 20 cm or less. The Ae (grey, leached) horizon is very thin or absent. Solodized Solonetz have a distinct Ae horizon between the dark A and the Solonetzic B. Solods have a transitional AB or BA horizon formed by degradation of the upper part of the Solonetzic B horizon. Vertisolic Solonetzic soils have features intergrading the Vertisolic order in addition to any of the above Solonetzic features. The developmental sequence of Solonetzic soils is commonly from saline parent material to Solonetz, Solodized Solonetz and Solod. As leaching progresses, the salts and sodium ions are translocated downward. If leaching progresses for long enough and salts are removed completely, the Solonetzic B may disintegrate completely. The soil would then be classified in another order. Resalinization may occur and reverse the process associated with leaching.
such as calcium. The C horizon usually contains calcium carbonate (lime); it may contain more soluble salts such as gypsum
. Chernozemic soils have mean annual soil temperatures above 0°C and occur in regions of semiarid and subhumid climates. Covering more than 4% of Canada's land area, they are the major class of soils in the southern Interior Plains
, where grass is the dominant native vegetation.
The 4 great groups of Chernozemic soils are distinguished based upon surface horizon colour, associated with the relative dryness of the soil. Brown soils have brownish A horizons and occur in the driest area of the Chernozemic region. Dark Brown soils have a darker A horizon than Brown soils, reflecting a somewhat higher precipitation and associated higher organic-matter content. Black soils, associated with subhumid climates and tall-grass native vegetation, have a black A horizon which is usually thicker than that of Brown or Dark Brown soils. Dark Gray soils are transitional between grassland Chernozemic soils and the more strongly leached
soils of forested regions.
from which clay has been leached after snowmelt or heavy rains and illuvial horizons
in which clay has been deposited; these horizons are designated Ae and Bt respectively. In saline or calcareous materials, clay translocation is preceded by leaching
of salts and carbonates. Luvisolic soils occur typically in forested areas of subhumid to humid climate where the parent materials contain appreciable clay. Luvisolic soils cover about 809 000 km2 (8.8%) of Canada's land area. Large areas of Luvisolic soils occur in the central to northern Interior Plains
; smaller areas in all regions south of the permafrost zone.
The 2 great groups of Luvisolic soils are distinguished mainly on the basis of soil temperature. Gray Brown Luvisols have a dark Ah horizon in which organic matter has been mixed with the mineral material (commonly by earthworm activity), a brown, often platy eluvial horizon (Ae) and an illuvial horizon (Bt) in which blocky structure is common. Their mean annual soil temperature is 8°C or higher. The major area of Gray Brown Luvisols is found in the southern part of the Great Lakes-St Lawrence Lowlands. Gray Luvisols have eluvial and illuvial horizons and may have an Ah horizon if the mean annual soil temperature is below 8°C. Vast areas of Gray Luvisols in the Boreal Forest Zone of the Interior Plains have thick, light grey eluvial horizons underlying the forest litter and thick Bt horizons with clay coating the surface of aggregates.
Four great groups are distinguished on the basis of organic matter enrichment in the A horizon and acidity. Melanic Brunisols have an Ah horizon at least 10 cm thick and a pH above 5.5. They occur commonly in southern Ontario and Quebec. Eutric Brunisols have the same basic properties as Melanic Brunisols, except that the Ah horizon, if any, is less than 10 cm thick. Sombric Brunisols have an Ah horizon at least 10 cm thick, and are acid and their pH is below 5.5. Dystric Brunisols are acidic and do not have an Ah horizon 10 cm thick.
USDA soil taxonomy
USDA Soil Taxonomy developed by United States Department of Agriculture and the National Cooperative Soil Survey provides an elaborate classification of soil types according to several parameters and in several levels: Order, Suborder, Great Group, Subgroup, Family, and Series.- Example of...
than any other. They differ in several ways. The Canadian system is designed to cover only Canadian soils. The Canadian system dispenses with a sub-order hierarchical level. Solonetzic and Gleysolic soils are differentiated at the order level. The American system is designed so that surface tillage cannot result in a change in classification.
Canada's first independent taxonomic system of soil classification was introduced in 1955. Prior to 1955, systems of classification used in Canada were strongly based on methods being applied in the United States. However, the U.S. system was based on environmental conditions common to the United States. Canadian soil scientists required a new method of soil classification that focused on pedogenic processes in cool climatic environments.
Like the US system, the Canadian System of Soil Classification differentiates soil types on the basis of measured properties of the profile and uses a hierarchical scheme to classify soils from general to specific. The most recent version of the classification system has five categories in its hierarchical structure. From general to specific, the major categories in this system are: orders, great groups, subgroups, families, and series. At its most general level, the Canadian System recognizes nine different soil orders:
Classification involves arranging individual units with similar characteristics into groups. Soils do not occur as discrete entities; thus the unit of measurement for soil is not obvious. This unit of measurement is called the pedon, defined as a 3-dimensional body, commonly with lateral dimensions of 1 m and depth of 1 to 2 m. A vertical section of a pedon displays the more-or-less horizontal layers (horizons
HORIZONS
HORIZONS is Hong Kong's second oldest gay group after Hong Kong Ten Percent Club.The organisation runs the Chinese Special Administrative Region's oldest counseling hotline for people affected by sexual orientation issues, which began operation months before HORIZONS was formally registered as a...
) developed by the action of soil-forming processes. Soil classification
Soil classification
Soil classification deals with the systematic categorization of soils based on distinguishing characteristics as well as criteria that dictate choices in use.- Overview :...
facilitates the organization and communication of information about soils, as well as the understanding of relationships between soils and environmental factors.
The land area of Canada (excluding inland waters) is approximately 9 180 000 km2, of which about 1 375 000 km2 (15%) is rock land. The remainder is classified according to the Canadian system of soil classification, which groups soils into sets of classes at 5 levels or categories from most general to most specific: order, great group, subgroup, family, series. There are 10 orders and several thousand series. Thus the system makes it possible to consider soils at different levels of specificity. Soil classes are defined as specifically as possible to permit uniformity of classification. Limits between classes are arbitrary as there are few sharp divisions of the soil continuum in nature. Differences in soils are the result of the interaction of many factors: climate, organisms, parent material, relief and time. The soil classification system changes as knowledge grows through soil mapping and research in Canada and elsewhere.
Cryosolic Order
These soils have permafrostPermafrost
In geology, permafrost, cryotic soil or permafrost soil is soil at or below the freezing point of water for two or more years. Ice is not always present, as may be in the case of nonporous bedrock, but it frequently occurs and it may be in amounts exceeding the potential hydraulic saturation of...
(permanently frozen material) within one metre of the surface (2 m if the soil is strongly cryoturbated; i.e., disturbed by frost action). As permafrost is a barrier to roots and water, the active layer (seasonally thawed material) above it may become a saturated, semifluid material in spring. Commonly the permafrost layer near the surface contains abundant ice. Melting of ice and frozen materials, resulting from disturbance of the surface vegetation (boreal forest or tundra), may cause slumping of the soil and disruption of roads, pipelines and buildings. Cryosolic soils, occupying about 3 672 000 km2 (about 40%) of Canada's land area, are dominant in much of the Yukon
Yukon
Yukon is the westernmost and smallest of Canada's three federal territories. It was named after the Yukon River. The word Yukon means "Great River" in Gwich’in....
, Northwest Territories
Northwest Territories
The Northwest Territories is a federal territory of Canada.Located in northern Canada, the territory borders Canada's two other territories, Yukon to the west and Nunavut to the east, and three provinces: British Columbia to the southwest, and Alberta and Saskatchewan to the south...
and Nunavut
Nunavut
Nunavut is the largest and newest federal territory of Canada; it was separated officially from the Northwest Territories on April 1, 1999, via the Nunavut Act and the Nunavut Land Claims Agreement Act, though the actual boundaries had been established in 1993...
and occur in northern areas of all but the Atlantic provinces (excluding Labrador
Newfoundland and Labrador
Newfoundland and Labrador is the easternmost province of Canada. Situated in the country's Atlantic region, it incorporates the island of Newfoundland and mainland Labrador with a combined area of . As of April 2011, the province's estimated population is 508,400...
).
The order and its 3 great groups were defined in 1973, after soil and terrain surveys in the Mackenzie Valley yielded new knowledge about the properties, genesis and significance of these soils. Turbic Cryosols have a patterned surface (hummocks, stone nets, etc.) and mixed horizons or other evidence of cryoturbation. Static Cryosols lack marked evidence of cryoturbation; they are associated with sandy or gravelly materials. Organic Cryosols are composed dominantly of organic materials (e.g., peat). Because organic material acts as an insulator, Organic Cryosols occur farther south than the boundary of continuous permafrost.
Organic Order
These soils are composed predominantly of organic matter in the upper half metre (more than 30% organic matter by weight) and do not have permafrost near the surface. They are the major soils of peatlands (e.g., swamp, bog, fen). Most organic soils develop by the accumulation of plant materials from species that grow well in areas usually saturated with water. Some organic soils are composed largely of plant materials deposited in lakes; others, mainly of forest leaf litter on rocky slopes in areas of high rainfall. Organic soils cover almost 374 000 km2 (4.1%) of Canada's land area: large areas occur in ManitobaManitoba
Manitoba is a Canadian prairie province with an area of . The province has over 110,000 lakes and has a largely continental climate because of its flat topography. Agriculture, mostly concentrated in the fertile southern and western parts of the province, is vital to the province's economy; other...
, Ontario
Ontario
Ontario is a province of Canada, located in east-central Canada. It is Canada's most populous province and second largest in total area. It is home to the nation's most populous city, Toronto, and the nation's capital, Ottawa....
and northern Alberta
Alberta
Alberta is a province of Canada. It had an estimated population of 3.7 million in 2010 making it the most populous of Canada's three prairie provinces...
, smaller areas in other provinces and territories.
Organic soils are subdivided into 4 great groups. Fibrisols, common in Canada, consist predominantly of relatively undecomposed organic material with clearly visible plant fragments; resistant fibres account for over 40% by volume. Most soils derived from Sphagnum mosses are Fibrisols. Mesisols are more highly decomposed and contain less fibrous material than Fibrisols (10-40% by volume). Humisols consist mainly of humified organic materials and may contain up to 10% fibre by volume. Folisols consist mainly of thick deposits of forest litter overlying bedrock, fractured bedrock or unconsolidated material. They occur commonly in wet mountainous areas of coastal British Columbia
British Columbia
British Columbia is the westernmost of Canada's provinces and is known for its natural beauty, as reflected in its Latin motto, Splendor sine occasu . Its name was chosen by Queen Victoria in 1858...
.
Vertisolic Order
These clay-rich soils shrink and swell markedly on drying and wetting. The physical disruption associated with shrinking and swelling produces shiny shear planes (slickensides) in the subsoil and either prevents the formation of subsurface horizons or severely disrupts and mixes them. When the soil swells on wetting, the former surficial material is mixed with the subsoil. Vertisolic soils develop mainly in clayey materials in semiarid to subhumid areas of the Interior PlainsInterior Plains
The Interior Plains is a vast physiographic region that spreads across the Laurentian craton of central North America.-Geography:The Interior Plains are an extensive physiographic division encompassing 8 distinct physiographic provinces, the Interior Low Plateaus, Great Plains, Central Lowland,...
of Saskatchewan
Saskatchewan
Saskatchewan is a prairie province in Canada, which has an area of . Saskatchewan is bordered on the west by Alberta, on the north by the Northwest Territories, on the east by Manitoba, and on the south by the U.S. states of Montana and North Dakota....
, Manitoba
Manitoba
Manitoba is a Canadian prairie province with an area of . The province has over 110,000 lakes and has a largely continental climate because of its flat topography. Agriculture, mostly concentrated in the fertile southern and western parts of the province, is vital to the province's economy; other...
and Alberta
Alberta
Alberta is a province of Canada. It had an estimated population of 3.7 million in 2010 making it the most populous of Canada's three prairie provinces...
and occupy less than 1% of the land area of Canada.
The order and its 2 great groups were recognized in the Canadian system in the 1990s after extensive studies of pedons in the Great Plains. The Vertisol great group has a light-coloured A horizon that is not readily distinguishable, and the Humid Vertisol great group has a dark-coloured A horizon enriched in organic matter that is clearly distinguishable from the underlying soil material.
Podzolic Order
These acid soils have a B horizon containing accumulations of amorphous materials composed of humified organic matter associated with aluminum and iron. They develop most commonly in sandy materials in areas of cold, humid climate under forest or shrub vegetation. Water moving downward through the relatively porous material leaches out basic elements (e.g., calcium), and acidic conditions develop. Soluble organic substances formed by decomposition of the forest litter attack soil minerals in surface horizons, and much of the iron and aluminum released combines with this organic material. When the proportion of aluminum and iron to organic matter reaches a critical level, the organic complex becomes insoluble and is deposited in the B horizon. Dissolved aluminum and iron may also move downward in inorganic forms and be deposited as aluminum-silicon complexes and iron oxides. An Ae (light grey, strongly leached) horizon usually overlies the Podzolic B horizon.Podzolic soils occupy about 1 429 000 km2 (15.6%) of Canada's land area and are dominant in vast areas of the humid Appalachian and Canadian Shield
Canadian Shield
The Canadian Shield, also called the Laurentian Plateau, or Bouclier Canadien , is a vast geological shield covered by a thin layer of soil that forms the nucleus of the North American or Laurentia craton. It is an area mostly composed of igneous rock which relates to its long volcanic history...
regions and in the humid coastal region of British Columbia
British Columbia
British Columbia is the westernmost of Canada's provinces and is known for its natural beauty, as reflected in its Latin motto, Splendor sine occasu . Its name was chosen by Queen Victoria in 1858...
. They are divided among 3 great groups on the basis of the kind of Podzolic B horizon. Humic Podzols have a dark B horizon with a low iron content. They occur mainly in wet sites under humid climates and are much less common than other Podzolic soils.
Ferro-Humic Podzols have a dark reddish brown or black B horizon containing at least 5% organic carbon and appreciable amounts (often 2% or more) of aluminum and iron in organic complexes. They occur commonly in the more humid parts of the area of Podzolic soils; e.g., coastal British Columbia and parts of Newfoundland and southern Quebec
Quebec
Quebec or is a province in east-central Canada. It is the only Canadian province with a predominantly French-speaking population and the only one whose sole official language is French at the provincial level....
. Humo-Ferric Podzols, the most common Podzolic soils in Canada, have a reddish brown B horizon containing less than 5% organic carbon associated with aluminum and iron complexes.
Gleysolic Order
These soils are periodically or permanently saturated with water and depleted of oxygen. They occur commonly in shallow depressions and level areas of subhumid and humid climate in association with other classes of soil on slopes and hills. After snowmelt or heavy rains, depressions in the landscape may be flooded. If flooding occurs when the soil temperature is above approximately 5°C, microbial activity results in depletion of oxygen within a few days. Under such conditions, oxidized soil components (e.g., nitrate, ferric oxide) are reduced. Depletion of ferric oxide removes the brownish colour common to many soils, leaving them grey. As the soil dries and oxygen re-enters, the reduced iron may be oxidized locally to bright yellow-brown spots (mottles). Thus, Gleysolic soils are usually identified by their poor drainage and drab grey colour, sometimes accompanied by brown mottles. Gleysolic soils cover about 117 000 km2 (1.3%) of Canada's land area.Three great groups of Gleysolic soils are defined. Humic Gleysols have a dark A horizon enriched in organic matter. Gleysols lack such a horizon. Luvic Gleysols have a leached (Ae) horizon underlain by a B horizon in which the clay has accumulated; they may have a dark surface horizon.
Solonetzic Order
These soils have B horizons that are very hard when dry, swelling to a sticky, compact mass when wet. They usually develop in saline parent materials in semiarid and subhumid regions. Properties of the B horizons are associated with sodium ions that cause the clay to disperse readily and swell on wetting, thus closing the large pores and preventing water flow. Solonetzic soils cover almost 73 000 km2 (0.7%) of Canada's land area; most occur in southern Alberta, because of the large areas of saline parent material and semiarid climate.The 4 great groups of Solonetzic soils are based on properties reflecting the degree of leaching. Solonetz soils have a dark, organic-matter-enriched A horizon overlying the Solonetzic B, which occurs usually at a depth of 20 cm or less. The Ae (grey, leached) horizon is very thin or absent. Solodized Solonetz have a distinct Ae horizon between the dark A and the Solonetzic B. Solods have a transitional AB or BA horizon formed by degradation of the upper part of the Solonetzic B horizon. Vertisolic Solonetzic soils have features intergrading the Vertisolic order in addition to any of the above Solonetzic features. The developmental sequence of Solonetzic soils is commonly from saline parent material to Solonetz, Solodized Solonetz and Solod. As leaching progresses, the salts and sodium ions are translocated downward. If leaching progresses for long enough and salts are removed completely, the Solonetzic B may disintegrate completely. The soil would then be classified in another order. Resalinization may occur and reverse the process associated with leaching.
Chernozemic Order
These soils have an A horizon darkened by the addition of organic matter, usually from the decay of grass roots. The A horizon is neutral to slightly acid and is well supplied with basesBase (chemistry)
For the term in genetics, see base A base in chemistry is a substance that can accept hydrogen ions or more generally, donate electron pairs. A soluble base is referred to as an alkali if it contains and releases hydroxide ions quantitatively...
such as calcium. The C horizon usually contains calcium carbonate (lime); it may contain more soluble salts such as gypsum
Gypsum
Gypsum is a very soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula CaSO4·2H2O. It is found in alabaster, a decorative stone used in Ancient Egypt. It is the second softest mineral on the Mohs Hardness Scale...
. Chernozemic soils have mean annual soil temperatures above 0°C and occur in regions of semiarid and subhumid climates. Covering more than 4% of Canada's land area, they are the major class of soils in the southern Interior Plains
Interior Plains
The Interior Plains is a vast physiographic region that spreads across the Laurentian craton of central North America.-Geography:The Interior Plains are an extensive physiographic division encompassing 8 distinct physiographic provinces, the Interior Low Plateaus, Great Plains, Central Lowland,...
, where grass is the dominant native vegetation.
The 4 great groups of Chernozemic soils are distinguished based upon surface horizon colour, associated with the relative dryness of the soil. Brown soils have brownish A horizons and occur in the driest area of the Chernozemic region. Dark Brown soils have a darker A horizon than Brown soils, reflecting a somewhat higher precipitation and associated higher organic-matter content. Black soils, associated with subhumid climates and tall-grass native vegetation, have a black A horizon which is usually thicker than that of Brown or Dark Brown soils. Dark Gray soils are transitional between grassland Chernozemic soils and the more strongly leached
Leaching (pedology)
In pedology, leaching is the loss of mineral and organic solutes due to percolation. It is a mechanism of soil formation. It is distinct from the soil forming process of eluviation, which is the loss of mineral and organic colloids. Leached and elluviated materials tend to be lost from topsoil and...
soils of forested regions.
Luvisolic Order
These soils have eluvial horizonsEluvium
Eluvium is the moniker of ambient recording artist Matthew Cooper, who currently resides in Portland, Oregon. Cooper, who was born in Tennessee and raised in Louisville, Kentucky before relocating to the Northwest, is known for blending various genres of experimental music including shoegaze,...
from which clay has been leached after snowmelt or heavy rains and illuvial horizons
Illuvium
Illuvium is material displaced across a soil profile, from one layer to another one, by the action of rainwater. The removal of material from a soil layer is called eluviation. The transport of the material may be either mechanical or chemical. The process of deposition of illuvium is termed...
in which clay has been deposited; these horizons are designated Ae and Bt respectively. In saline or calcareous materials, clay translocation is preceded by leaching
Leaching (pedology)
In pedology, leaching is the loss of mineral and organic solutes due to percolation. It is a mechanism of soil formation. It is distinct from the soil forming process of eluviation, which is the loss of mineral and organic colloids. Leached and elluviated materials tend to be lost from topsoil and...
of salts and carbonates. Luvisolic soils occur typically in forested areas of subhumid to humid climate where the parent materials contain appreciable clay. Luvisolic soils cover about 809 000 km2 (8.8%) of Canada's land area. Large areas of Luvisolic soils occur in the central to northern Interior Plains
Interior Plains
The Interior Plains is a vast physiographic region that spreads across the Laurentian craton of central North America.-Geography:The Interior Plains are an extensive physiographic division encompassing 8 distinct physiographic provinces, the Interior Low Plateaus, Great Plains, Central Lowland,...
; smaller areas in all regions south of the permafrost zone.
The 2 great groups of Luvisolic soils are distinguished mainly on the basis of soil temperature. Gray Brown Luvisols have a dark Ah horizon in which organic matter has been mixed with the mineral material (commonly by earthworm activity), a brown, often platy eluvial horizon (Ae) and an illuvial horizon (Bt) in which blocky structure is common. Their mean annual soil temperature is 8°C or higher. The major area of Gray Brown Luvisols is found in the southern part of the Great Lakes-St Lawrence Lowlands. Gray Luvisols have eluvial and illuvial horizons and may have an Ah horizon if the mean annual soil temperature is below 8°C. Vast areas of Gray Luvisols in the Boreal Forest Zone of the Interior Plains have thick, light grey eluvial horizons underlying the forest litter and thick Bt horizons with clay coating the surface of aggregates.
Brunisolic Order
This order includes all soils that have developed B horizons but do not meet the requirements of any of the orders described previously. Many Brunisolic soils have brownish B horizons without much evidence of clay accumulation, as in Luvisolic soils, or of amorphous materials, as in Podzolic soils. With time and stable environmental conditions, some Brunisolic soils will evolve to Luvisolic soils; others, to Podzolic soils. Covering almost 790 000 km2 (8.6%) of Canada's land area, Brunisolic soils occur in association with other soils in all regions south of the permafrost zone.Four great groups are distinguished on the basis of organic matter enrichment in the A horizon and acidity. Melanic Brunisols have an Ah horizon at least 10 cm thick and a pH above 5.5. They occur commonly in southern Ontario and Quebec. Eutric Brunisols have the same basic properties as Melanic Brunisols, except that the Ah horizon, if any, is less than 10 cm thick. Sombric Brunisols have an Ah horizon at least 10 cm thick, and are acid and their pH is below 5.5. Dystric Brunisols are acidic and do not have an Ah horizon 10 cm thick.