Boosted fission weapon
Encyclopedia
A boosted fission weapon usually refers to a type of nuclear bomb that uses a small amount of fusion
Nuclear fusion
Nuclear fusion is the process by which two or more atomic nuclei join together, or "fuse", to form a single heavier nucleus. This is usually accompanied by the release or absorption of large quantities of energy...

 fuel to increase the rate, and thus yield, of a fission
Nuclear fission
In nuclear physics and nuclear chemistry, nuclear fission is a nuclear reaction in which the nucleus of an atom splits into smaller parts , often producing free neutrons and photons , and releasing a tremendous amount of energy...

 reaction. The neutron
Neutron
The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of...

s released by the fusion reactions add to the neutrons released in the fission, as well as inducing the fission reactions to release more neutrons of their own. The rate of fission is increased so much that much more of the fissile material is able to undergo fission before the core explosively disassembles. The fusion process itself adds only a small amount of energy to the process, perhaps 1%.

The alternative meaning is an obsolete type of single-stage nuclear bomb that uses thermonuclear fusion on a large scale to create fast neutrons that can cause fission in depleted uranium
Depleted uranium
Depleted uranium is uranium with a lower content of the fissile isotope U-235 than natural uranium . Uses of DU take advantage of its very high density of 19.1 g/cm3...

, but which is not a two-stage hydrogen bomb. This type of bomb was referred to by Edward Teller
Edward Teller
Edward Teller was a Hungarian-American theoretical physicist, known colloquially as "the father of the hydrogen bomb," even though he did not care for the title. Teller made numerous contributions to nuclear and molecular physics, spectroscopy , and surface physics...

 as "Alarm Clock", and by Andrei Sakharov
Andrei Sakharov
Andrei Dmitrievich Sakharov was a Soviet nuclear physicist, dissident and human rights activist. He earned renown as the designer of the Soviet Union's Third Idea, a codename for Soviet development of thermonuclear weapons. Sakharov was an advocate of civil liberties and civil reforms in the...

 as "Sloika" or "Layer Cake" (Teller and Sakharov developed the idea independently, as far as is known).

The idea of boosting was originally developed between Fall 1947 and Fall 1949 at Los Alamos
Los Alamos National Laboratory
Los Alamos National Laboratory is a United States Department of Energy national laboratory, managed and operated by Los Alamos National Security , located in Los Alamos, New Mexico...

.

Gas boosting in modern nuclear weapons

In a fission bomb, the fissile
Fissile
In nuclear engineering, a fissile material is one that is capable of sustaining a chain reaction of nuclear fission. By definition, fissile materials can sustain a chain reaction with neutrons of any energy. The predominant neutron energy may be typified by either slow neutrons or fast neutrons...

 fuel is "assembled" quickly by a uniform spherical implosion created with conventional explosives
Explosive lens
An explosive lens—as used, for example, in nuclear weapons—is a highly specialized explosive charge, a special type of a shaped charge. In general, it is a device composed of several explosive charges that are shaped in such a way as to change the shape of the detonation wave passing through it,...

, producing a supercritical mass. In this state, many of the neutrons released by the fissioning of a nucleus will induce fission of other nuclei in the fuel mass, also releasing additional neutrons, leading to a chain reaction
Chain reaction
A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events....

. This reaction consumes at most 20% of the fuel before the bomb blows itself apart, or possibly much less if conditions are not ideal: the Little Boy
Little Boy
"Little Boy" was the codename of the atomic bomb dropped on Hiroshima on August 6, 1945 by the Boeing B-29 Superfortress Enola Gay, piloted by Colonel Paul Tibbets of the 393rd Bombardment Squadron, Heavy, of the United States Army Air Forces. It was the first atomic bomb to be used as a weapon...

 (gun type mechanism) and Fat Man
Fat Man
"Fat Man" is the codename for the atomic bomb that was detonated over Nagasaki, Japan, by the United States on August 9, 1945. It was the second of the only two nuclear weapons to be used in warfare to date , and its detonation caused the third man-made nuclear explosion. The name also refers more...

 (implosion type mechanism) bombs had efficiencies of 1.38% and 13%, respectively.

Fusion boosting is achieved by introducing tritium
Tritium
Tritium is a radioactive isotope of hydrogen. The nucleus of tritium contains one proton and two neutrons, whereas the nucleus of protium contains one proton and no neutrons...

 and deuterium
Deuterium
Deuterium, also called heavy hydrogen, is one of two stable isotopes of hydrogen. It has a natural abundance in Earth's oceans of about one atom in of hydrogen . Deuterium accounts for approximately 0.0156% of all naturally occurring hydrogen in Earth's oceans, while the most common isotope ...

 gas (solid lithium deuteride-tritide has also been used in some cases, but gas allows more flexibility and can be stored externally) into a hollow cavity at the center of the sphere of fission fuel, or into a gap between an outer layer and a "levitated" inner core, sometime before implosion. By the time about 1% of the fission fuel has fissioned, the temperature rises high enough to cause thermonuclear fusion, which produces relatively large numbers of neutrons speeding up the late stages of the chain reaction and approximately doubling its efficiency.

Deuterium-tritium fusion neutrons are extremely energetic, seven times more energetic than an average fission neutron, which makes them much more likely to be captured in the fissile material and lead to fission. This is due to several reasons:
  1. Their high velocity creates the opposite of time absorption: time magnification.
  2. When these energetic neutrons strike a fissile nucleus, a much larger number of secondary neutrons are released by the fission (e.g. 4.6 vs 2.9 for Pu-239).
  3. The fission cross section
    Nuclear cross section
    The nuclear cross section of a nucleus is used to characterize the probability that a nuclear reaction will occur. The concept of a nuclear cross section can be quantified physically in terms of "characteristic area" where a larger area means a larger probability of interaction...

     is larger both in absolute terms, and in proportion to the scattering
    Scattering
    Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of...

     and capture
    Neutron capture
    Neutron capture is a kind of nuclear reaction in which an atomic nucleus collides with one or more neutrons and they merge to form a heavier nucleus. Since neutrons have no electric charge they can enter a nucleus more easily than positively charged protons, which are repelled...

     cross sections.


Taking these factors into account, the maximum alpha value for D-T fusion neutrons in plutonium (density 19.8 g/cm³) is some 8 times higher than for an average fission neutron (2.5 vs 3).

A sense of the potential contribution of fusion boosting can be gained by observing that the complete fusion of one mole
Mole (unit)
The mole is a unit of measurement used in chemistry to express amounts of a chemical substance, defined as an amount of a substance that contains as many elementary entities as there are atoms in 12 grams of pure carbon-12 , the isotope of carbon with atomic weight 12. This corresponds to a value...

 of tritium (3 grams) and one mole of deuterium (2 grams) would produce one mole of neutrons (1 gram), which, neglecting escape losses and scattering for the moment, could fission one mole (239 grams) of plutonium directly, producing 4.6 moles of secondary neutrons, which can in turn fission another 4.6 moles of plutonium (1099 g). The fission of this 1338 g of plutonium in the first two generations would release 23 kilotons of TNT equivalent (97 TJ) of energy, and would by itself result in a 29.7% efficiency for a bomb containing 4.5 kg of plutonium (a typical small fission trigger). The energy released by the fusion of the 5 g of fusion fuel itself is only 1.73% of the energy released by the fission of 1.338 kg of plutonium. Larger total yields and higher efficiency are possible, since the chain reaction can continue beyond the second generation after fusion boosting.

Fusion-boosted fission bombs can also be made immune to neutron radiation
Neutron radiation
Neutron radiation is a kind of ionizing radiation which consists of free neutrons. A result of nuclear fission or nuclear fusion, it consists of the release of free neutrons from atoms, and these free neutrons react with nuclei of other atoms to form new isotopes, which, in turn, may produce...

 from nearby nuclear explosions, which can cause other designs to predetonate, blowing themselves apart without achieving a high yield.
The combination of reduced weight in relation to yield and immunity to radiation has ensured that most modern nuclear weapons are fusion-boosted.

The fusion reaction rate typically becomes significant at 20 to 30 megakelvins. This temperature is reached at very low efficiencies, when less than 1% of the fissile material has fissioned (corresponding to a yield in the range of hundreds of tons of TNT). Since implosion weapons can be designed that will achieve yields in this range even if neutrons are present at the moment of criticality, fusion boosting allows the manufacture of efficient weapons that are immune to predetonation. Elimination of this hazard is a very important advantage in using boosting. It appears that every weapon now in the U.S. arsenal is a boosted design.

According to one weapons designer, boosting is mainly responsible for the remarkable 100-fold increase in the efficiency of fission weapons since 1945.

Some early non-staged thermonuclear weapon designs

Early thermonuclear weapon designs such as the Joe-4, the Soviet "Layer Cake" ("Sloika"), used large amounts of fusion to induce fission in the uranium-238
Uranium-238
Uranium-238 is the most common isotope of uranium found in nature. It is not fissile, but is a fertile material: it can capture a slow neutron and after two beta decays become fissile plutonium-239...

 atoms that make up depleted uranium
Depleted uranium
Depleted uranium is uranium with a lower content of the fissile isotope U-235 than natural uranium . Uses of DU take advantage of its very high density of 19.1 g/cm3...

. These weapons had a fissile core surrounded by a layer of lithium-6 deuteride, in turn surrounded by a layer of depleted uranium. Some designs (including the layer cake) had several alternate layers of these materials. The Soviet Layer Cake was similar to the American Alarm Clock design, which was never built, and the British Green Bamboo design, which was built but never tested.

When this type of bomb explodes, the fission of the highly enriched uranium or plutonium
Plutonium
Plutonium is a transuranic radioactive chemical element with the chemical symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, forming a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation...

 core creates neutron
Neutron
The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of...

s, some of which escape and strike atoms of lithium-6, creating tritium
Tritium
Tritium is a radioactive isotope of hydrogen. The nucleus of tritium contains one proton and two neutrons, whereas the nucleus of protium contains one proton and no neutrons...

. At the temperature created by fission in the core, tritium and deuterium can undergo thermonuclear fusion without a high level of compression. The fusion of tritium and deuterium produces a neutron with an energy of 14 MeV
MEV
MeV and meV are multiples and submultiples of the electron volt unit referring to 1,000,000 eV and 0.001 eV, respectively.Mev or MEV may refer to:In entertainment:* Musica Elettronica Viva, an Italian musical group...

—a much higher energy than the 1 MeV of the neutron that began the reaction. This creation of high-energy neutrons, rather than energy yield, is the main purpose of fusion in this kind of weapon. This 14 MeV neutron then strikes an atom of uranium-238, causing fission: without this fusion stage, the original 1 MeV neutron hitting an atom of uranium-238 would probably have just been absorbed. This fission then releases energy and also neutrons, which then create more tritium from the remaining lithium-6, and so on, in a continuous cycle. Energy from fission of uranium-238 is useful in weapons: both because depleted uranium is very much cheaper than highly enriched uranium and because it cannot go critical and is therefore less likely to be involved in a catastrophic accident.

This kind of thermonuclear weapon can produce up to 20% of its yield from fusion, with the rest coming from fission and is limited in yield to less than one megaton
TNT equivalent
TNT equivalent is a method of quantifying the energy released in explosions. The ton of TNT is a unit of energy equal to 4.184 gigajoules, which is approximately the amount of energy released in the detonation of one ton of TNT...

 of TNT (4 PJ) equivalent. Joe-4 yielded 400 kilotons of TNT (1.7 PJ). In comparison, a "true" hydrogen bomb can produce up to 97% of its yield from fusion
Tsar Bomba
Tsar Bomba is the nickname for the AN602 hydrogen bomb, the most powerful nuclear weapon ever detonated. It was also referred to as Kuz'kina Mat , in this usage meaning "something that has not been seen before"....

, and there is no upper limit to its explosive yield.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK