PCV valve
Encyclopedia
A crankcase ventilation system is a way for gases to escape in a controlled manner from the crankcase
of an internal combustion engine
. A common type of such system is a positive crankcase ventilation (PCV) system, the heart of which is a PCV valve—a variable-restriction valve
that can react to changing pressure
values and intermittently allow the passage of the gases to their intended destination (which nowadays is the engine's intake stream).
Internal combustion inevitably involves a small but continual amount of blow-by, which occurs when some of the gases from the combustion leak past the piston ring
s (that is, blow by them) to end up inside the crankcase. The gases could be vented through a simple hole or tube directly to the atmosphere, or they could "find their own way out" past baffles or past the oil seals of shafts or the gasket
s of bolted joints. This is not a problem from a mechanical engineering viewpoint alone; but from other viewpoints, such as cleanliness for the user and environmental protection
, such simple ventilation methods are not enough; escape of oil and gases must be prevented via a closed system that routes the escaping gases to the engine's intake stream and allows fresh air to come in.
s and steam locomotive
s in the decades before. Even bearing
and valve
designs generally made little to no provision for keeping oil or waste gases contained. Sealed bearings and valve covers were for special applications only. For example, oilers
kept the locomotives and rolling stock
of railroads continually supplied with oil both inside and out. Although it was applied sparingly to oil cups and oil holes, it was not expected to stay hermetically sealed off from dripping and leaking to the wider environment. Gaskets and shaft seals were meant to limit loss of oil, but they were usually not expected to entirely prevent it. On internal combustion engines, the hydrocarbon-rich blow-by gases would diffuse through the oil in the seals and gaskets into the atmosphere. Engines with high amounts of blow-by (e.g., worn out ones, or ones not well built to begin with) would leak profusely via those routes.
From 1928 until the early 1960s, car and truck petrol engine
s vented combustion gases directly to the atmosphere through a simple vent tube. Frequently, this consisted of a pipe (the 'road draft tube') that extended out from the crankcase down to the bottom of the engine compartment. The bottom of the pipe was open to the atmosphere, and was placed such that when the car was in motion a slight vacuum was obtained, helping to extract combustion gases as they collected in the crankcase. The vacuum was satisfied by a vent, typically in the valve or valley cover, creating a constant flow of clean air through the engine's air volume. The oil mist would also be discharged, resulting in an oily film being deposited in the middle of each travel lane on heavily-used roads. The system was not positive though, as gases could travel both ways, or not move at all, depending on conditions. (Most modern diesel engine
s still use this type of system to dispose of crankcase fumes.)
During World War II
, however, a different type of crankcase ventilation had to be invented to allow tank
engines to operate during deep fording
operations, where the normal draft tube ventilator would have allowed water to enter the crankcase and destroy the engine. The PCV system and its control valve were invented to meet this need, but no need for it on automobiles was recognized.
In 1952, Professor A. J. Haagen-Smit
, of the California Institute of Technology
at Pasadena
, postulated that unburned hydrocarbons were a primary constituent of smog
, and that gasoline powered automobiles were a major source of those hydrocarbons. After some investigation by the GM Research Laboratory (led by Dr. Lloyd L. Withrow), it was discovered in 1958 that the road draft tube was a major source, about half, of the hydrocarbons coming from the automobile. GM's Cadillac
Division, which had built many tanks during WWII, recognized that the simple PCV valve could be used to become the first major reduction in automotive hydrocarbon emissions. After confirming the PCV valves' effectiveness at hydrocarbon reduction, GM offered the PCV solution to the entire U.S. automobile industry, royalty free, through its trade association, the Automobile Manufacturers Association
(AMA). In the absence of any legislated requirement, the AMA members agreed to put it on all California cars voluntarily in 1961, with national application following one year later, in 1962.
In 1967, several years after its introduction into production, the PCV system became the subject of a U.S. federal grand jury
investigation, when it was alleged by some industry critics that the AMA was conspiring to keep several such smog reduction devices on the shelf to delay further smog control. After eighteen months of investigation by U.S. Attorney Samuel Flatow, the grand jury returned a "no-bill" decision, clearing the AMA, but resulting in a "Consent Decree" that all U.S. automobile companies agreed not to work jointly on smog control activities for a period of ten years.
In the decades since, the legislation and regulation around emissions has tightened substantially, and the emissions of cars and light trucks have decreased substantially.
Today's petrol engines continue to use PCV systems in addition to many other emissions control measures, many of which reduce toxic exhaust emissions by relying on sensor
s (to collect status information for computer input), engine control unit
s (for information processing), and actuators (to translate computer output to the changing of conditions).
, on a fuel injected engine) goes through the intake manifold. The PCV system just diverts a small percentage of this air via the breather to the crankcase before allowing it to be drawn back in to the intake tract again. It is an "open system" in that fresh exterior air is continuously used to flush contaminants from the crankcase and into the combustion chamber.
The system relies on the fact that, while the engine is running under light load and moderate throttle opening, the intake manifold's air pressure is always less than crankcase air pressure. The lower pressure of the intake manifold draws air towards it, pulling air from the breather through the crankcase (where it dilutes and mixes with combustion gases), through the PCV valve, and into the intake manifold.
The PCV system usually consists of the breather tube and the PCV valve. The breather tube connects the crankcase to a clean source of fresh air—the air cleaner body. Usually, clean air from the air cleaner flows into this tube and into the engine after passing through a screen, baffle, or other simple system to arrest a flame front, to prevent a potentially explosive atmosphere within the engine crank case from being ignited from a back-fire
in to the intake manifold. The baffle, filter, or screen also traps oil mist, and keeps it inside the engine.
Once inside the engine, the air circulates around the interior of the engine, picking up and clearing away combustion byproduct gases, including a large amount of water vapor which includes dissolved chemical combustion byproducts, then exits through another simple baffle, screen, or mesh to trap oil droplets before being drawn out through the PCV valve, and into the intake manifold. On some PCV systems, this oil baffling takes place in a discrete replaceable part called the oil separator.
During the mid 1960s, substantial work was completed on an entirely independent crankcase ventilation system. The Engine Ventilation System had its own air intake filter, a sizable crankcase gases filter, condensate chamber, and highly engineered air flow valve. The system recycles clean water vapor, filters light oil, and filters air into the intake system before the carburetor, resulting in lower carbon monoxide and hydrocarbon emissions and extended engine oil life. Ford Motor Company made this system a requirement on all its material handling equipment (lift trucks) in 1971. This system was also used extensively on over-the-road diesel trucks and irrigation pumps. The AMA's choice of catalytic converter made automotive use unlikely.
The PCV valve connects the crankcase to the intake manifold from a location more-or-less opposite the breather connection. Typical locations include the opposite valve cover that the breather tube connects to on a V engine
. A typical location is the valve cover(s), although some engines place the valve in locations far from the valve cover. The valve is simple, but actually performs a complicated control function. An internal restrictor (generally a cone or ball) is held in "normal" (engine off, zero vacuum) position with a light spring, exposing the full size of the PCV opening to the intake manifold. With the engine running, the tapered end of the cone is drawn towards the opening in the PCV valve by manifold vacuum, restricting the opening proportionate to the level of engine vacuum vs. spring tension. At idle, the intake manifold vacuum is near maximum. It is at this time the least amount of blow by is actually occurring, so the PCV valve provides the largest amount of (but not complete) restriction. As engine load increases, vacuum on the valve decreases proportionally and blow by increases proportionally. With a lower level of vacuum, the spring returns the cone to the "open" position to allow more air flow. At full throttle, vacuum is much reduced, down to between 1.5 and 3" Hg. At this point the PCV valve is nearly useless, and most combustion gases escape via the "breather tube" where they are then drawn in to the engine's intake manifold anyway.
Should the intake manifold's pressure be higher than that of the crankcase (which can happen in a turbocharged
engine, or under certain conditions, such as an intake backfire), the PCV valve closes to prevent reversal of the exhausted air back into the crankcase again. In many cases PCV valves were only used for a few years, the function being taken over by a port on constant depression carburetors such as the SU. This has no moving parts or diaphragm to jam, block or rip like many PCV valves. It also doesn't have a 'one-way' function but the lack of it was never a problem in intake backfire.
It is critical that the parts of the PCV system be kept clean and open, otherwise air flow will be insufficient. A plugged or malfunctioning PCV system will eventually damage an engine. PCV problems are primarily due to neglect or poor maintenance, typically engine oil change intervals that are inadequate for the engine's driving conditions. A poorly-maintained engine's PCV system will eventually become contaminated with sludge, causing serious problems. If the engine's lubricating oil is changed with adequate frequency, the PCV system will remain clear practically for the life of the engine. However, since the valve is operating continuously as one operates the vehicle, it will fail over time. Typical maintenance schedules for gasoline engines include PCV valve replacement whenever the air filter or spark plugs are replaced. The long life of the valve despite the harsh operating environment is due to the trace amount of oil droplets suspended in the air that flows through the valve that keep it lubricated.
s use a scavenger system and venturi tube in the exhaust to draw out combustion gases and maintain a small amount of vacuum in the crankcase to prevent oil leaks on to the race track. Small gasoline two stroke engines use the crankcase to partially compress incoming air. All blow by in these engines is burned in the regular flow of air and fuel through the engine. Many small four-cycle engines such as lawn mower engines and small gasoline generators, simply use a draft tube connected to the intake, between the air filter and carburetor, to route all blow by back into the intake mixture. The higher operating temperature
of these small engines has a side effect of preventing large amounts of water vapor and light hydrocarbons from condensing in the engine oil.
Crankcase
In an internal combustion engine of the reciprocating type, the crankcase is the housing for the crankshaft. The enclosure forms the largest cavity in the engine and is located below the cylinder, which in a multicylinder engine are usually integrated into one or several cylinder blocks...
of an internal combustion engine
Internal combustion engine
The internal combustion engine is an engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber. In an internal combustion engine, the expansion of the high-temperature and high -pressure gases produced by combustion apply direct force to some component of the engine...
. A common type of such system is a positive crankcase ventilation (PCV) system, the heart of which is a PCV valve—a variable-restriction valve
Valve
A valve is a device that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways. Valves are technically pipe fittings, but are usually discussed as a separate category...
that can react to changing pressure
Pressure
Pressure is the force per unit area applied in a direction perpendicular to the surface of an object. Gauge pressure is the pressure relative to the local atmospheric or ambient pressure.- Definition :...
values and intermittently allow the passage of the gases to their intended destination (which nowadays is the engine's intake stream).
Internal combustion inevitably involves a small but continual amount of blow-by, which occurs when some of the gases from the combustion leak past the piston ring
Piston ring
A piston ring is a split ring that fits into a groove on the outer diameter of a piston in a reciprocating engine such as an internal combustion engine or steam engine.The three main functions of piston rings in reciprocating engines are:...
s (that is, blow by them) to end up inside the crankcase. The gases could be vented through a simple hole or tube directly to the atmosphere, or they could "find their own way out" past baffles or past the oil seals of shafts or the gasket
Gasket
thumb|sright|250px|Some seals and gaskets1. [[o-ring]]2. fiber [[Washer |washer]]3. paper gaskets4. [[cylinder head]] [[head gasket|gasket]]...
s of bolted joints. This is not a problem from a mechanical engineering viewpoint alone; but from other viewpoints, such as cleanliness for the user and environmental protection
Environmental protection
Environmental protection is a practice of protecting the environment, on individual, organizational or governmental level, for the benefit of the natural environment and humans. Due to the pressures of population and our technology the biophysical environment is being degraded, sometimes permanently...
, such simple ventilation methods are not enough; escape of oil and gases must be prevented via a closed system that routes the escaping gases to the engine's intake stream and allows fresh air to come in.
History of gradual development
From the late 19th century through the early 20th, blow-by gases were allowed to find their own way out past seals and gaskets. It was considered normal for oil to be found both inside and outside an engine, and for oil to drip to the ground in small but constant amounts. This had also been true for steam engineSteam engine
A steam engine is a heat engine that performs mechanical work using steam as its working fluid.Steam engines are external combustion engines, where the working fluid is separate from the combustion products. Non-combustion heat sources such as solar power, nuclear power or geothermal energy may be...
s and steam locomotive
Steam locomotive
A steam locomotive is a railway locomotive that produces its power through a steam engine. These locomotives are fueled by burning some combustible material, usually coal, wood or oil, to produce steam in a boiler, which drives the steam engine...
s in the decades before. Even bearing
Bearing (mechanical)
A bearing is a device to allow constrained relative motion between two or more parts, typically rotation or linear movement. Bearings may be classified broadly according to the motions they allow and according to their principle of operation as well as by the directions of applied loads they can...
and valve
Poppet valve
A poppet valve is a valve consisting of a hole, usually round or oval, and a tapered plug, usually a disk shape on the end of a shaft also called a valve stem. The shaft guides the plug portion by sliding through a valve guide...
designs generally made little to no provision for keeping oil or waste gases contained. Sealed bearings and valve covers were for special applications only. For example, oilers
Oiler (occupation)
An oiler is a worker whose main job is to oil machinery. In previous eras there were oiler positions in various industries, including maritime work , railroading, steelmaking, and mining...
kept the locomotives and rolling stock
Rolling stock
Rolling stock comprises all the vehicles that move on a railway. It usually includes both powered and unpowered vehicles, for example locomotives, railroad cars, coaches and wagons...
of railroads continually supplied with oil both inside and out. Although it was applied sparingly to oil cups and oil holes, it was not expected to stay hermetically sealed off from dripping and leaking to the wider environment. Gaskets and shaft seals were meant to limit loss of oil, but they were usually not expected to entirely prevent it. On internal combustion engines, the hydrocarbon-rich blow-by gases would diffuse through the oil in the seals and gaskets into the atmosphere. Engines with high amounts of blow-by (e.g., worn out ones, or ones not well built to begin with) would leak profusely via those routes.
From 1928 until the early 1960s, car and truck petrol engine
Petrol engine
A petrol engine is an internal combustion engine with spark-ignition, designed to run on petrol and similar volatile fuels....
s vented combustion gases directly to the atmosphere through a simple vent tube. Frequently, this consisted of a pipe (the 'road draft tube') that extended out from the crankcase down to the bottom of the engine compartment. The bottom of the pipe was open to the atmosphere, and was placed such that when the car was in motion a slight vacuum was obtained, helping to extract combustion gases as they collected in the crankcase. The vacuum was satisfied by a vent, typically in the valve or valley cover, creating a constant flow of clean air through the engine's air volume. The oil mist would also be discharged, resulting in an oily film being deposited in the middle of each travel lane on heavily-used roads. The system was not positive though, as gases could travel both ways, or not move at all, depending on conditions. (Most modern diesel engine
Diesel engine
A diesel engine is an internal combustion engine that uses the heat of compression to initiate ignition to burn the fuel, which is injected into the combustion chamber...
s still use this type of system to dispose of crankcase fumes.)
During World War II
World War II
World War II, or the Second World War , was a global conflict lasting from 1939 to 1945, involving most of the world's nations—including all of the great powers—eventually forming two opposing military alliances: the Allies and the Axis...
, however, a different type of crankcase ventilation had to be invented to allow tank
Tank
A tank is a tracked, armoured fighting vehicle designed for front-line combat which combines operational mobility, tactical offensive, and defensive capabilities...
engines to operate during deep fording
Ford (crossing)
A ford is a shallow place with good footing where a river or stream may be crossed by wading or in a vehicle. A ford is mostly a natural phenomenon, in contrast to a low water crossing, which is an artificial bridge that allows crossing a river or stream when water is low.The names of many towns...
operations, where the normal draft tube ventilator would have allowed water to enter the crankcase and destroy the engine. The PCV system and its control valve were invented to meet this need, but no need for it on automobiles was recognized.
In 1952, Professor A. J. Haagen-Smit
Arie Jan Haagen-Smit
Arie Jan Haagen-Smit was a Dutch chemist. He is best known for linking the smog in Southern California to automobiles and is therefore known by many as the "father" of air pollution control. After serving as an original board member of the Motor Vehicle Pollution Control Board, formed in 1960 to...
, of the California Institute of Technology
California Institute of Technology
The California Institute of Technology is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering...
at Pasadena
Pasadena, California
Pasadena is a city in Los Angeles County, California, United States. Although famous for hosting the annual Rose Bowl football game and Tournament of Roses Parade, Pasadena is the home to many scientific and cultural institutions, including the California Institute of Technology , the Jet...
, postulated that unburned hydrocarbons were a primary constituent of smog
Smog
Smog is a type of air pollution; the word "smog" is a portmanteau of smoke and fog. Modern smog is a type of air pollution derived from vehicular emission from internal combustion engines and industrial fumes that react in the atmosphere with sunlight to form secondary pollutants that also combine...
, and that gasoline powered automobiles were a major source of those hydrocarbons. After some investigation by the GM Research Laboratory (led by Dr. Lloyd L. Withrow), it was discovered in 1958 that the road draft tube was a major source, about half, of the hydrocarbons coming from the automobile. GM's Cadillac
Cadillac
Cadillac is an American luxury vehicle marque owned by General Motors . Cadillac vehicles are sold in over 50 countries and territories, but mostly in North America. Cadillac is currently the second oldest American automobile manufacturer behind fellow GM marque Buick and is among the oldest...
Division, which had built many tanks during WWII, recognized that the simple PCV valve could be used to become the first major reduction in automotive hydrocarbon emissions. After confirming the PCV valves' effectiveness at hydrocarbon reduction, GM offered the PCV solution to the entire U.S. automobile industry, royalty free, through its trade association, the Automobile Manufacturers Association
Automobile Manufacturers Association
The Automobile Manufacturers Association was a trade group of automobile manufacturers which operated under various names in the United States from 1911 to 1999....
(AMA). In the absence of any legislated requirement, the AMA members agreed to put it on all California cars voluntarily in 1961, with national application following one year later, in 1962.
In 1967, several years after its introduction into production, the PCV system became the subject of a U.S. federal grand jury
Grand jury
A grand jury is a type of jury that determines whether a criminal indictment will issue. Currently, only the United States retains grand juries, although some other common law jurisdictions formerly employed them, and most other jurisdictions employ some other type of preliminary hearing...
investigation, when it was alleged by some industry critics that the AMA was conspiring to keep several such smog reduction devices on the shelf to delay further smog control. After eighteen months of investigation by U.S. Attorney Samuel Flatow, the grand jury returned a "no-bill" decision, clearing the AMA, but resulting in a "Consent Decree" that all U.S. automobile companies agreed not to work jointly on smog control activities for a period of ten years.
In the decades since, the legislation and regulation around emissions has tightened substantially, and the emissions of cars and light trucks have decreased substantially.
Today's petrol engines continue to use PCV systems in addition to many other emissions control measures, many of which reduce toxic exhaust emissions by relying on sensor
Sensor
A sensor is a device that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument. For example, a mercury-in-glass thermometer converts the measured temperature into expansion and contraction of a liquid which can be read on a calibrated...
s (to collect status information for computer input), engine control unit
Engine control unit
An engine control unit is a type of electronic control unit that determines the amount of fuel, ignition timing and other parameters an internal combustion engine needs to keep running...
s (for information processing), and actuators (to translate computer output to the changing of conditions).
System components and operation details
The PCV valve is only one part of the PCV system, which is essentially a variable and calibrated air leak, whereby the engine returns its crankcase combustion gases. Instead of the gases being vented to the atmosphere, gases are fed back into the intake manifold, to re-enter the combustion chamber as part of a fresh charge of air and fuel. The PCV system is not a classical "vacuum leak". All the air collected by the air cleaner (and metered by the mass flow sensorMass flow sensor
A mass air flow sensor is used to find out the mass flowrate of air entering a fuel-injected internal combustion engine. The air mass information is necessary for the engine control unit to balance and deliver the correct fuel mass to the engine. Air changes its density as it expands and contracts...
, on a fuel injected engine) goes through the intake manifold. The PCV system just diverts a small percentage of this air via the breather to the crankcase before allowing it to be drawn back in to the intake tract again. It is an "open system" in that fresh exterior air is continuously used to flush contaminants from the crankcase and into the combustion chamber.
The system relies on the fact that, while the engine is running under light load and moderate throttle opening, the intake manifold's air pressure is always less than crankcase air pressure. The lower pressure of the intake manifold draws air towards it, pulling air from the breather through the crankcase (where it dilutes and mixes with combustion gases), through the PCV valve, and into the intake manifold.
The PCV system usually consists of the breather tube and the PCV valve. The breather tube connects the crankcase to a clean source of fresh air—the air cleaner body. Usually, clean air from the air cleaner flows into this tube and into the engine after passing through a screen, baffle, or other simple system to arrest a flame front, to prevent a potentially explosive atmosphere within the engine crank case from being ignited from a back-fire
Back-fire
A Back-fire or backfire is an explosion produced by a running internal combustion engine that occurs in the air intake or exhaust system rather than inside the combustion chamber. The same term is used when unburned fuel or hydrocarbons are ignited somewhere in the exhaust system. A visible flame...
in to the intake manifold. The baffle, filter, or screen also traps oil mist, and keeps it inside the engine.
Once inside the engine, the air circulates around the interior of the engine, picking up and clearing away combustion byproduct gases, including a large amount of water vapor which includes dissolved chemical combustion byproducts, then exits through another simple baffle, screen, or mesh to trap oil droplets before being drawn out through the PCV valve, and into the intake manifold. On some PCV systems, this oil baffling takes place in a discrete replaceable part called the oil separator.
During the mid 1960s, substantial work was completed on an entirely independent crankcase ventilation system. The Engine Ventilation System had its own air intake filter, a sizable crankcase gases filter, condensate chamber, and highly engineered air flow valve. The system recycles clean water vapor, filters light oil, and filters air into the intake system before the carburetor, resulting in lower carbon monoxide and hydrocarbon emissions and extended engine oil life. Ford Motor Company made this system a requirement on all its material handling equipment (lift trucks) in 1971. This system was also used extensively on over-the-road diesel trucks and irrigation pumps. The AMA's choice of catalytic converter made automotive use unlikely.
The PCV valve connects the crankcase to the intake manifold from a location more-or-less opposite the breather connection. Typical locations include the opposite valve cover that the breather tube connects to on a V engine
V engine
A V engine, or Vee engine is a common configuration for an internal combustion engine. The cylinders and pistons are aligned, in two separate planes or 'banks', so that they appear to be in a "V" when viewed along the axis of the crankshaft...
. A typical location is the valve cover(s), although some engines place the valve in locations far from the valve cover. The valve is simple, but actually performs a complicated control function. An internal restrictor (generally a cone or ball) is held in "normal" (engine off, zero vacuum) position with a light spring, exposing the full size of the PCV opening to the intake manifold. With the engine running, the tapered end of the cone is drawn towards the opening in the PCV valve by manifold vacuum, restricting the opening proportionate to the level of engine vacuum vs. spring tension. At idle, the intake manifold vacuum is near maximum. It is at this time the least amount of blow by is actually occurring, so the PCV valve provides the largest amount of (but not complete) restriction. As engine load increases, vacuum on the valve decreases proportionally and blow by increases proportionally. With a lower level of vacuum, the spring returns the cone to the "open" position to allow more air flow. At full throttle, vacuum is much reduced, down to between 1.5 and 3" Hg. At this point the PCV valve is nearly useless, and most combustion gases escape via the "breather tube" where they are then drawn in to the engine's intake manifold anyway.
Should the intake manifold's pressure be higher than that of the crankcase (which can happen in a turbocharged
Turbocharger
A turbocharger, or turbo , from the Greek "τύρβη" is a centrifugal compressor powered by a turbine that is driven by an engine's exhaust gases. Its benefit lies with the compressor increasing the mass of air entering the engine , thereby resulting in greater performance...
engine, or under certain conditions, such as an intake backfire), the PCV valve closes to prevent reversal of the exhausted air back into the crankcase again. In many cases PCV valves were only used for a few years, the function being taken over by a port on constant depression carburetors such as the SU. This has no moving parts or diaphragm to jam, block or rip like many PCV valves. It also doesn't have a 'one-way' function but the lack of it was never a problem in intake backfire.
It is critical that the parts of the PCV system be kept clean and open, otherwise air flow will be insufficient. A plugged or malfunctioning PCV system will eventually damage an engine. PCV problems are primarily due to neglect or poor maintenance, typically engine oil change intervals that are inadequate for the engine's driving conditions. A poorly-maintained engine's PCV system will eventually become contaminated with sludge, causing serious problems. If the engine's lubricating oil is changed with adequate frequency, the PCV system will remain clear practically for the life of the engine. However, since the valve is operating continuously as one operates the vehicle, it will fail over time. Typical maintenance schedules for gasoline engines include PCV valve replacement whenever the air filter or spark plugs are replaced. The long life of the valve despite the harsh operating environment is due to the trace amount of oil droplets suspended in the air that flows through the valve that keep it lubricated.
Alternatives in non-car-and-light-truck usage
Not all petrol engines have PCV valves. Engines not subject to emission controls, such as certain off-road engines, retain road draft tubes. DragsterDragster
Dragster may refer to*Dragster, a rock band of the New Wave of British Heavy Metal era.*Dragster, a video game released in 1980.*Dragster, a term referring to a custom-built vehicle used in drag racing....
s use a scavenger system and venturi tube in the exhaust to draw out combustion gases and maintain a small amount of vacuum in the crankcase to prevent oil leaks on to the race track. Small gasoline two stroke engines use the crankcase to partially compress incoming air. All blow by in these engines is burned in the regular flow of air and fuel through the engine. Many small four-cycle engines such as lawn mower engines and small gasoline generators, simply use a draft tube connected to the intake, between the air filter and carburetor, to route all blow by back into the intake mixture. The higher operating temperature
Operating temperature
An operating temperature is the temperature at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the device function and application context, and ranges from the minimum operating temperature to the...
of these small engines has a side effect of preventing large amounts of water vapor and light hydrocarbons from condensing in the engine oil.