Nanofluidics
Encyclopedia
Nanofluidics is the study of the behavior, manipulation, and control of fluid
Fluid
In physics, a fluid is a substance that continually deforms under an applied shear stress. Fluids are a subset of the phases of matter and include liquids, gases, plasmas and, to some extent, plastic solids....

s that are confined to structures of nanometer (typically 1-100 nm) characteristic dimensions (1 nm = 10-9 m). Fluids confined in these structures exhibit physical behaviors not observed in larger structures, such as those of micrometer
Microfluidics
Microfluidics deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale.Typically, micro means one of the following features:* small volumes...

 dimensions and above, because the characteristic physical scaling lengths of the fluid, (e.g. Debye length
Debye length
In plasma physics, the Debye length , named after the Dutch physicist and physical chemist Peter Debye, is the scale over which mobile charge carriers screen out electric fields in plasmas and other conductors. In other words, the Debye length is the distance over which significant charge...

, hydrodynamic radius
Hydrodynamic radius
The hydrodynamic radius of a macromolecule or colloid particle has two meanings. Some books use it as a synonym for the Stokes radius. Section 6.4 page 290....

) very closely coincide with the dimensions of the nanostructure
Nanostructure
A nanostructure is an object of intermediate size between molecular and microscopic structures.In describing nanostructures it is necessary to differentiate between the number of dimensions on the nanoscale. Nanotextured surfaces have one dimension on the nanoscale, i.e., only the thickness of the...

 itself.
When structures approach the size regime corresponding to molecular scaling lengths, new physical constraints are placed on the behavior of the fluid. For example, these physical constraints induce regions of the fluid to exhibit new properties not observed in bulk, e.g. vastly increased viscosity
Viscosity
Viscosity is a measure of the resistance of a fluid which is being deformed by either shear or tensile stress. In everyday terms , viscosity is "thickness" or "internal friction". Thus, water is "thin", having a lower viscosity, while honey is "thick", having a higher viscosity...

 near the pore wall; they may effect changes in thermodynamic properties and may also alter the chemical reactivity of species at the fluid-solid interface
Interface (chemistry)
An interface is a surface forming a common boundary among two different phases, such as an insoluble solid and a liquid, two immiscible liquids or a liquid and an insoluble gas. The importance of the interface depends on which type of system is being treated: the bigger the quotient area/volume,...

. A particularly relevant and useful example is displayed by electrolyte
Electrolyte
In chemistry, an electrolyte is any substance containing free ions that make the substance electrically conductive. The most typical electrolyte is an ionic solution, but molten electrolytes and solid electrolytes are also possible....

 solutions confined in nanopore
Nanopore
A nanopore is a small hole. It may, for example, be created by a pore-forming protein or as a hole in synthetic materials such as silicon or graphene....

s that contain surface charge
Surface charge
Surface charge is the electric charge present at an interface. There are many different processes which can lead to a surface being charged, including adsorption of ions, protonation/deprotonation, and the application of an external electric field...

s, i.e. at electrified interfaces, as shown in the nanocapillary array membrane (NCAM) in the accompanying figure.

All electrified interfaces induce an organized charge distribution near the surface known as the electrical double layer. In pores of nanometer dimensions the electrical double layer may completely span the width of the nanopore, resulting in dramatic changes in the composition of the fluid and the related properties of fluid motion in the structure. For example, the drastically enhanced surface-to-volume ratio
Surface area to volume ratio
The surface-area-to-volume ratio also called the surface-to-volume ratio and variously denoted sa/vol or SA:V, is the amount of surface area per unit volume of an object or collection of objects. The surface-area-to-volume ratio is measured in units of inverse distance. A cube with sides of...

 of the pore results in a preponderance of counter-ions (i.e. ion
Ion
An ion is an atom or molecule in which the total number of electrons is not equal to the total number of protons, giving it a net positive or negative electrical charge. The name was given by physicist Michael Faraday for the substances that allow a current to pass between electrodes in a...

s charged oppositely to the static wall charges) over co-ions (possessing the same sign as the wall charges), in many cases to the near-complete exclusion of co-ions, such that only one ionic species exists in the pore. This can be used for manipulation of species with selective polarity along the pore length to achieve unusual fluidic manipulation schemes not possible in micrometer
Microfluidics
Microfluidics deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale.Typically, micro means one of the following features:* small volumes...

 and larger structures.

Theory

In 1965, Rice and Whitehead published the seminal contribution to the theory of the transport of electrolyte solutions in long (ideally infinite) nanometer-diameter capillaries.
Briefly, the potential
Electric potential
In classical electromagnetism, the electric potential at a point within a defined space is equal to the electric potential energy at that location divided by the charge there...

, ϕ, at a radial distance, r, is given by the Poisson-Boltzmann equation
Poisson-Boltzmann equation
The Poisson–Boltzmann equation is a differential equation that describes electrostatic interactions between molecules in ionic solutions. It is the mathematical base for the Gouy–Chapman double layer theory; first proposed by Gouy in 1910 and complemented by Chapman in 1913...

,



where κ is the inverse Debye length
Debye length
In plasma physics, the Debye length , named after the Dutch physicist and physical chemist Peter Debye, is the scale over which mobile charge carriers screen out electric fields in plasmas and other conductors. In other words, the Debye length is the distance over which significant charge...

,



determined by the ion number density
Number density
In physics, astronomy, and chemistry, number density is an intensive quantity used to describe the degree of concentration of countable objects in the three-dimensional physical space...

, n, the dielectric constant
Dielectric constant
The relative permittivity of a material under given conditions reflects the extent to which it concentrates electrostatic lines of flux. In technical terms, it is the ratio of the amount of electrical energy stored in a material by an applied voltage, relative to that stored in a vacuum...

, ε, the Boltzmann constant, k, and the temperature, T. Knowing the potential, φ(r), the charge density
Charge density
The linear, surface, or volume charge density is the amount of electric charge in a line, surface, or volume, respectively. It is measured in coulombs per meter , square meter , or cubic meter , respectively, and represented by the lowercase Greek letter Rho . Since there are positive as well as...

 can then be recovered from the Poisson equation, whose solution may be expressed as a modified Bessel function
Bessel function
In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y of Bessel's differential equation:...

 of the first kind, I0, and scaled to the capillary radius, a. An equation of motion under combined pressure and electrically-driven
Electrohydrodynamics
Electrohydrodynamics , also known as electro-fluid-dynamics or electrokinetics, is the study of the dynamics of electrically charged fluids. It is the study of the motions of ionised particles or molecules and their interactions with electric fields and the surrounding fluid...

 flow can then be written,



where η is the viscosity, dp/dz is the pressure gradient, and Fz is the body force driven by the action of the applied electric field
Electric field
In physics, an electric field surrounds electrically charged particles and time-varying magnetic fields. The electric field depicts the force exerted on other electrically charged objects by the electrically charged particle the field is surrounding...

, Ez, on the net charge density in the double layer.
When there is no applied pressure, the radial distribution of the velocity is given by,



From the equation above, it follows that fluid flow in nanocapillaries is governed by the κa product, that is, the relative sizes of the Debye length
Debye length
In plasma physics, the Debye length , named after the Dutch physicist and physical chemist Peter Debye, is the scale over which mobile charge carriers screen out electric fields in plasmas and other conductors. In other words, the Debye length is the distance over which significant charge...

 and the pore radius.
By adjusting these two parameters and the surface charge density of the nanopores, fluid flow can be manipulated as desired.

Fabrication

Nanostructures can be fabricated as single cylindrical channels, nanoslits, or nanochannel arrays from materials such as silicon, glass, polymers (e.g. PMMA, PDMS
Polydimethylsiloxane
Polydimethylsiloxane belongs to a group of polymeric organosilicon compounds that are commonly referred to as silicones. PDMS is the most widely used silicon-based organic polymer, and is particularly known for its unusual rheological properties. PDMS is optically clear, and, in general, is...

, PCTE) and synthetic vesicles.
Standard photolithography
Photolithography
Photolithography is a process used in microfabrication to selectively remove parts of a thin film or the bulk of a substrate. It uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical "photoresist", or simply "resist," on the substrate...

, bulk or surface micromachining, replication techniques (embossing, printing, casting and injection molding), and nuclear track or chemical etching,
are commonly used to fabricate structures which exhibit characteristic nanofluidic behavior.

Applications

Because of the small size of the fluidic conduits, nanofluidic structures are naturally applied in situations demanding that samples be handled in exceedingly small quantities, including Coulter counting,
analytical separations and determinations of biomolecules, such as proteins and DNA,
and facile handling of mass-limited samples. One of the more promising areas of nanofluidics is its potential for integration into microfluidic systems, i.e. MicroTotal Analytical Systems or Lab-on-a-chip
Lab-on-a-chip
A lab-on-a-chip is a device that integrates one or several laboratory functions on a single chip of only millimeters to a few square centimeters in size. LOCs deal with the handling of extremely small fluid volumes down to less than pico liters. Lab-on-a-chip devices are a subset of MEMS devices...

 structures. For instance, NCAMs, when incorporated into microfluidic devices, can reproducibly perform digital switching, allowing transfer of fluid from one microfluidic channel to another,
selectivity separate and transfer analytes by size and mass,,
mix reactants efficiently,
and separate fluids with disparate characteristics.
In addition, there is a natural analogy between the fluid handling capabilities of nanofluidic structures and the ability of electronic components to control the flow of electrons and holes. This analogy has been used to realize active electronic functions such as rectification
and field-effect
and bipolar transistor
Transistor
A transistor is a semiconductor device used to amplify and switch electronic signals and power. It is composed of a semiconductor material with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current...


action with ionic currents. Application of nanofluidics is also to Nano-optics for producing tuneable microlens array

Nanofluidics have had a significant impact in biotechnology
Biotechnology
Biotechnology is a field of applied biology that involves the use of living organisms and bioprocesses in engineering, technology, medicine and other fields requiring bioproducts. Biotechnology also utilizes these products for manufacturing purpose...

, medicine
Medicine
Medicine is the science and art of healing. It encompasses a variety of health care practices evolved to maintain and restore health by the prevention and treatment of illness....

 and clinical diagnostics with the development of lab-on-a-chip
Lab-on-a-chip
A lab-on-a-chip is a device that integrates one or several laboratory functions on a single chip of only millimeters to a few square centimeters in size. LOCs deal with the handling of extremely small fluid volumes down to less than pico liters. Lab-on-a-chip devices are a subset of MEMS devices...

 devices for PCR and related techniques.

Because the science of nanofluidics is still in its infancy, we can expect rapid development of new applications in the coming years.

Challenges

There are a variety of challenges associated with the flow of liquids through carbon nanotube
Carbon nanotube
Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. Nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1, significantly larger than for any other material...

s and nanopipes. A common occurrence is channel blocking due to large macromolecules in the liquid. Also, any insoluble debris in the liquid can easily clog the tube. A solution for this that researchers are hoping to find a low friction coating or channel materials that help reduce the blocking of the tubes. Also, due to the large size of polymers, including biologically relevant molecules such as DNA often fold in vivo. This causes blockage because typical DNA molecules from a virus have lengths of approx. 100-200 kilobases and will form a random coil of the radius some 700 nm in aqueous solution at 20%. This is also several times greater than the pore diameter of even large carbon pipes and 2 orders of magnitude the diameter of a single walled carbon nanotube.

See also

  • Nanomechanics
    Nanomechanics
    Nanomechanics is a branch of nanoscience studying fundamental mechanical properties of physical systems at the nanometer scale. Nanomechanics has emerged on the crossroads of classical mechanics, solid-state physics, statistical mechanics, materials science, and quantum chemistry...

  • Nanotechnology
    Nanotechnology
    Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres...

  • Microfluidics
    Microfluidics
    Microfluidics deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale.Typically, micro means one of the following features:* small volumes...

  • Nanofluidic Circuitry
    Nanofluidic Circuitry
    Nanofluidic circuitry is a nanotechnology aiming for control of fluids in nanometer scale. Due to the effect of an electrical double layer within the fluid channel, the behavior of nanofluid is observed to be significantly different compared with its microfluidic counterparts. Its typical...

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK