NEAR Shoemaker
Encyclopedia
The Near Earth Asteroid Rendezvous - Shoemaker (NEAR Shoemaker), renamed after its 1996 launch in honor of planetary scientist Eugene M. Shoemaker, was a robotic
space probe
designed by the Johns Hopkins University
Applied Physics Laboratory
for NASA
to study the near-Earth asteroid Eros
from close orbit over a period of a year. The mission succeeded in closing in with the asteroid and orbited several times around it, finally terminating by touching down on the asteroid on 12 February 2001.
The primary scientific objective of NEAR was to return data on the bulk properties, composition, mineral
ogy, morphology, internal mass
distribution and magnetic field
of Eros. Secondary objectives include studies of regolith
properties, interactions with the solar wind
, possible current activity as indicated by dust or gas, and the asteroid spin state. This data will be used to help understand the characteristics of asteroid
s in general, their relationship to meteorite
s and comet
s, and the conditions in the early solar system. To accomplish these goals, the spacecraft was equipped with an X-ray
/gamma ray spectrometer
, a near-infrared imaging spectrograph, a multi-spectral camera fitted with a CCD imaging detector, a laser rangefinder
, and a magnetometer
. A radio science experiment was also performed using the NEAR tracking system to estimate the gravity field of the asteroid. The total mass of the instruments was 56 kg, and they required 81 W power.
from orbit for approximately one year. Eros is an S-type asteroid
approximately 13 × 13 × 33 km in size, the second largest near-Earth asteroid. Initially the orbit was circular with a radius of 200 km. The radius of the orbit was brought down in stages to a 50 × 50 km orbit on 30 April 2000 and decreased to 35 × 35 km on July 14, 2000. The orbit was raised over succeeding months to a 200 × 200 km orbit and then slowly decreased and altered to a 35 × 35 km retrograde orbit on December 13, 2000. The mission ended with a touchdown in the "saddle" region of Eros on February 12, 2001.
Some scientists claim that the ultimate goal of the mission was to link Eros, an asteroidal body, to meteorites recovered on Earth. With sufficient data on chemical composition, a causal link could be established between Eros and other S-type asteroids, and those meteorites believed to be pieces of S-type asteroids (perhaps Eros itself). Once this connection is established, meteorite material can be studied with large, complex, and evolving equipment, and the results extrapolated to bodies in space. NEAR-Shoemaker did not prove or disprove this link to the satisfaction of scientists. However, it is undeniable that NEAR data advanced the field of asteroidal studies tremendously.
launch vehicle with nine strap-on solid-rocket boosters and a Star 48 (PAM-D) third stage) and exit from Earth orbit, NEAR entered the first part of its cruise phase. NEAR spent most of the cruise phase in a minimal activity "hibernation" state, which ended a few days before the flyby of the 61 km diameter asteroid 253 Mathilde
.
On June 27, 1997 the spacecraft flew within 1200 km of Mathilde at 12:56 UT at 9.93 km/s, returning imaging and other instrument data. The flyby produced over 500 images which covered 60% of Mathilde's surface, as well as gravitational data allowing calculations of Mathilde's dimensions and mass.
On July 3, 1997 NEAR executed the first major deep space maneuver, a two-part burn of the main 450 N thruster. This decreased the velocity by 279 m/s and lowered perihelion from 0.99 AU
to 0.95 AU. The Earth gravity assist swingby
occurred on January 23, 1998 at 7:23 UT. The closest approach was 540 km, altering the orbital inclination
from 0.5 to 10.2 degrees, and the aphelion distance from 2.17 to 1.77 AU, nearly matching those of Eros. Instrumentation was active at this time.
and began tumbling. The spacecraft's thrusters
were fired thousands of times during the anomaly which expended 29 kg of propellant reducing the program's propellant margin to zero. This anomaly almost resulted in the complete loss of the spacecraft due to the loss of solar orientation and subsequent battery drain. Contact between the spacecraft and mission control was not re-established for over 24 hours. The full root cause has not been determined but software programming errors and operational errors contributed to the severity of the anomaly.
The original mission plan called for the four burns to be followed by an orbit insertion burn on January 10, 1999, but the abort of the first burn and loss of communication made this impossible. A new plan was put into effect in which NEAR flew by Eros on December 23, 1998 at 18:41:23 UT at a speed of 965 m/s and a distance of 3827 km from the center of mass of Eros. Images of Eros were taken by the camera, data was collected by the near IR
spectrograph, and radio tracking was performed during the flyby. A rendezvous maneuver was performed on January 3, 1999 involving a thruster burn to match NEAR's orbital speed to that of Eros. A hydrazine
thruster burn took place on January 20 to fine-tune the trajectory. On August 12 a two-minute thruster burn slowed the spacecraft velocity relative to Eros to 300 km/h.
, the spacecraft's gamma-ray spectrometer was reprogrammed to collect data on Eros' composition from a vantage point about four inches from the surface where it was ten times more sensitive than when it was used in orbit.
At 7 p.m. EST on February 28, 2001 the last data signals were received from NEAR Shoemaker before it was shut down. A final attempt to communicate with the spacecraft on December 10, 2002 was unsuccessful. This was likely due to the extreme -279 °F (-173 °C, 100 K
) conditions the probe experienced while on Eros.
s in a windmill arrangement, a fixed 1.5 m X-band
high-gain radio antenna with a magnetometer
mounted on the antenna feed, and an X-ray solar monitor on one end (the forward deck), with the other instruments fixed on the opposite end (the aft deck). Most electronics were mounted on the inside of the decks. The propulsion module was contained in the interior.
The craft was three-axis stabilized and used a single bipropellant (hydrazine
/ nitrogen tetroxide) 450 newton (N) main thruster, and four 21 N and seven 3.5 N hydrazine thrusters for propulsion, for a total delta-V
potential of 1450 m/s. Attitude control was achieved using the hydrazine thrusters and four reaction wheels. The propulsion system carried 209 kg of hydrazine and 109 kg of NTO oxidizer in two oxidizer and three fuel tanks.
Power was provided by four 1.8 by 1.2 meter gallium arsenide solar panels which could produce 400 watt
s at 2.2 AU
(329,000,000 km), NEAR's maximum distance from the Sun, and 1800 W at one AU (150,000,000 km). Power was stored in a nine ampere-hour, 22-cell rechargeable super nickel-cadmium battery.
Spacecraft guidance was achieved through the use of a sensor suite of five digital solar attitude detectors, an inertial measurement unit, (IMU) and a star tracker camera pointed opposite the instrument pointing direction. The IMU contained hemispherical resonator gyroscope
s and accelerometers. Four reaction wheels (arranged so that any three can provide complete three-axis control) were used for normal attitude control. The thrusters were used to dump angular momentum
from the reaction wheels, as well as for rapid slew and propulsive maneuvers. Attitude control was to 0.1 degree, line-of-sight pointing stability is within 50 microradians over one second, and post-processing attitude knowledge is to 50 microradians.
The command and data handling subsystem was composed of two redundant command and telemetry processors and solid state recorders, a power switching unit, and an interface to two redundant 1553 standard data buses
for communications with other subsystems. The solid state recorders are constructed from 16 Mbit IBM Luna-C DRAM
s. One recorder has 1.1 gigabit
s of storage, the other has 0.67 gigabits.
The NEAR mission was the first launch of NASA's Discovery Program
, a series of small-scale spacecraft designed to proceed from development to flight in under three years for a cost of less than $150 million. The construction, launch, and 30 day cost for this mission is estimated at $122 million. The final total mission cost was $224 million which consisted of $124.9 million for spacecraft development, $44.6 million for launch support and tracking, and $54.6 million for mission operations and data analysis.
Robotic spacecraft
A robotic spacecraft is a spacecraft with no humans on board, that is usually under telerobotic control. A robotic spacecraft designed to make scientific research measurements is often called a space probe. Many space missions are more suited to telerobotic rather than crewed operation, due to...
space probe
Space probe
A robotic spacecraft is a spacecraft with no humans on board, that is usually under telerobotic control. A robotic spacecraft designed to make scientific research measurements is often called a space probe. Many space missions are more suited to telerobotic rather than crewed operation, due to...
designed by the Johns Hopkins University
Johns Hopkins University
The Johns Hopkins University, commonly referred to as Johns Hopkins, JHU, or simply Hopkins, is a private research university based in Baltimore, Maryland, United States...
Applied Physics Laboratory
Applied Physics Laboratory
The Johns Hopkins University Applied Physics Laboratory , located in Howard County, Maryland near Laurel and Columbia, is a not-for-profit, university-affiliated research center employing 4,500 people. APL is primarily a defense contractor. It serves as a technical resource for the Department of...
for NASA
NASA
The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation's civilian space program and for aeronautics and aerospace research...
to study the near-Earth asteroid Eros
433 Eros
433 Eros is a near-Earth asteroid discovered in 1898, and the first asteroid to be orbited by a probe . It is an S-type asteroid approximately 34.4×11.2×11.2 km in size, the second-largest NEA after 1036 Ganymed, and belongs to the Amor group.Eros is a Mars-crosser asteroid, the first known...
from close orbit over a period of a year. The mission succeeded in closing in with the asteroid and orbited several times around it, finally terminating by touching down on the asteroid on 12 February 2001.
The primary scientific objective of NEAR was to return data on the bulk properties, composition, mineral
Mineral
A mineral is a naturally occurring solid chemical substance formed through biogeochemical processes, having characteristic chemical composition, highly ordered atomic structure, and specific physical properties. By comparison, a rock is an aggregate of minerals and/or mineraloids and does not...
ogy, morphology, internal mass
Mass
Mass can be defined as a quantitive measure of the resistance an object has to change in its velocity.In physics, mass commonly refers to any of the following three properties of matter, which have been shown experimentally to be equivalent:...
distribution and magnetic field
Magnetic field
A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude ; as such it is a vector field.Technically, a magnetic field is a pseudo vector;...
of Eros. Secondary objectives include studies of regolith
Regolith
Regolith is a layer of loose, heterogeneous material covering solid rock. It includes dust, soil, broken rock, and other related materials and is present on Earth, the Moon, some asteroids, and other terrestrial planets and moons.-Etymology:...
properties, interactions with the solar wind
Solar wind
The solar wind is a stream of charged particles ejected from the upper atmosphere of the Sun. It mostly consists of electrons and protons with energies usually between 1.5 and 10 keV. The stream of particles varies in temperature and speed over time...
, possible current activity as indicated by dust or gas, and the asteroid spin state. This data will be used to help understand the characteristics of asteroid
Asteroid
Asteroids are a class of small Solar System bodies in orbit around the Sun. They have also been called planetoids, especially the larger ones...
s in general, their relationship to meteorite
Meteoroid
A meteoroid is a sand- to boulder-sized particle of debris in the Solar System. The visible path of a meteoroid that enters Earth's atmosphere is called a meteor, or colloquially a shooting star or falling star. If a meteoroid reaches the ground and survives impact, then it is called a meteorite...
s and comet
Comet
A comet is an icy small Solar System body that, when close enough to the Sun, displays a visible coma and sometimes also a tail. These phenomena are both due to the effects of solar radiation and the solar wind upon the nucleus of the comet...
s, and the conditions in the early solar system. To accomplish these goals, the spacecraft was equipped with an X-ray
X-ray spectroscopy
X-ray spectroscopy is a gathering name for several spectroscopic techniques for characterization of materials by using x-ray excitation.-Characteristic X-ray Spectroscopy:...
/gamma ray spectrometer
Gamma ray spectrometer
A Gamma-Ray Spectrometer, or , is an instrument for measuring the distribution of the intensity of gamma radiation versus the energy of each photon....
, a near-infrared imaging spectrograph, a multi-spectral camera fitted with a CCD imaging detector, a laser rangefinder
Laser range-finder
A laser rangefinder is a device which uses a laser beam to determine the distance to an object. The most common form of laser rangefinder operates on the time of flight principle by sending a laser pulse in a narrow beam towards the object and measuring the time taken by the pulse to be reflected...
, and a magnetometer
Magnetometer
A magnetometer is a measuring instrument used to measure the strength or direction of a magnetic field either produced in the laboratory or existing in nature...
. A radio science experiment was also performed using the NEAR tracking system to estimate the gravity field of the asteroid. The total mass of the instruments was 56 kg, and they required 81 W power.
Mission profile
- Launch date/time: 1996-02-17 at 20:43:27 UTC
- On-orbit dry mass: 487 kg
- Nominal power output: 1800 W
Summary
The primary goal of the mission was to study the near Earth asteroid 433 Eros433 Eros
433 Eros is a near-Earth asteroid discovered in 1898, and the first asteroid to be orbited by a probe . It is an S-type asteroid approximately 34.4×11.2×11.2 km in size, the second-largest NEA after 1036 Ganymed, and belongs to the Amor group.Eros is a Mars-crosser asteroid, the first known...
from orbit for approximately one year. Eros is an S-type asteroid
S-type asteroid
S-type asteroids are of a stony composition, hence the name. Approximately 17% of asteroids are of this type, making it the second most common after the C-type.-Characteristics:...
approximately 13 × 13 × 33 km in size, the second largest near-Earth asteroid. Initially the orbit was circular with a radius of 200 km. The radius of the orbit was brought down in stages to a 50 × 50 km orbit on 30 April 2000 and decreased to 35 × 35 km on July 14, 2000. The orbit was raised over succeeding months to a 200 × 200 km orbit and then slowly decreased and altered to a 35 × 35 km retrograde orbit on December 13, 2000. The mission ended with a touchdown in the "saddle" region of Eros on February 12, 2001.
Some scientists claim that the ultimate goal of the mission was to link Eros, an asteroidal body, to meteorites recovered on Earth. With sufficient data on chemical composition, a causal link could be established between Eros and other S-type asteroids, and those meteorites believed to be pieces of S-type asteroids (perhaps Eros itself). Once this connection is established, meteorite material can be studied with large, complex, and evolving equipment, and the results extrapolated to bodies in space. NEAR-Shoemaker did not prove or disprove this link to the satisfaction of scientists. However, it is undeniable that NEAR data advanced the field of asteroidal studies tremendously.
The journey to Eros
After launch on a Delta 7925-8 (a Delta IIDelta II
Delta II was an American space launch system, originally designed and built by McDonnell Douglas. Delta II is part of the Delta rocket family and was in service from 1989 until November 1, 2011...
launch vehicle with nine strap-on solid-rocket boosters and a Star 48 (PAM-D) third stage) and exit from Earth orbit, NEAR entered the first part of its cruise phase. NEAR spent most of the cruise phase in a minimal activity "hibernation" state, which ended a few days before the flyby of the 61 km diameter asteroid 253 Mathilde
253 Mathilde
253 Mathilde is a main-belt asteroid about 50 km in diameter that was discovered by Johann Palisa in 1885. It has a relatively elliptical orbit that requires more than four years to circle the Sun. This asteroid has an unusually slow rate of rotation, requiring 17.4 days to complete a...
.
On June 27, 1997 the spacecraft flew within 1200 km of Mathilde at 12:56 UT at 9.93 km/s, returning imaging and other instrument data. The flyby produced over 500 images which covered 60% of Mathilde's surface, as well as gravitational data allowing calculations of Mathilde's dimensions and mass.
On July 3, 1997 NEAR executed the first major deep space maneuver, a two-part burn of the main 450 N thruster. This decreased the velocity by 279 m/s and lowered perihelion from 0.99 AU
Astronomical unit
An astronomical unit is a unit of length equal to about or approximately the mean Earth–Sun distance....
to 0.95 AU. The Earth gravity assist swingby
Gravitational slingshot
In orbital mechanics and aerospace engineering, a gravitational slingshot, gravity assist maneuver, or swing-by is the use of the relative movement and gravity of a planet or other celestial body to alter the path and speed of a spacecraft, typically in order to save propellant, time, and expense...
occurred on January 23, 1998 at 7:23 UT. The closest approach was 540 km, altering the orbital inclination
Inclination
Inclination in general is the angle between a reference plane and another plane or axis of direction.-Orbits:The inclination is one of the six orbital parameters describing the shape and orientation of a celestial orbit...
from 0.5 to 10.2 degrees, and the aphelion distance from 2.17 to 1.77 AU, nearly matching those of Eros. Instrumentation was active at this time.
Failure of first attempt at orbital insertion
The first of four scheduled rendezvous burns was attempted on December 20, 1998 at 22:00 UT. The burn sequence was initiated but immediately aborted. The spacecraft subsequently entered safe modeSafe mode (spacecraft)
Safe mode is an operating mode of a modern spacecraft during which all non-essential systems are shut down and only essential functions such as thermal management, radio reception and attitude control are active.-Triggering events:...
and began tumbling. The spacecraft's thrusters
Rocket engine
A rocket engine, or simply "rocket", is a jet engineRocket Propulsion Elements; 7th edition- chapter 1 that uses only propellant mass for forming its high speed propulsive jet. Rocket engines are reaction engines and obtain thrust in accordance with Newton's third law...
were fired thousands of times during the anomaly which expended 29 kg of propellant reducing the program's propellant margin to zero. This anomaly almost resulted in the complete loss of the spacecraft due to the loss of solar orientation and subsequent battery drain. Contact between the spacecraft and mission control was not re-established for over 24 hours. The full root cause has not been determined but software programming errors and operational errors contributed to the severity of the anomaly.
The original mission plan called for the four burns to be followed by an orbit insertion burn on January 10, 1999, but the abort of the first burn and loss of communication made this impossible. A new plan was put into effect in which NEAR flew by Eros on December 23, 1998 at 18:41:23 UT at a speed of 965 m/s and a distance of 3827 km from the center of mass of Eros. Images of Eros were taken by the camera, data was collected by the near IR
Infrared
Infrared light is electromagnetic radiation with a wavelength longer than that of visible light, measured from the nominal edge of visible red light at 0.74 micrometres , and extending conventionally to 300 µm...
spectrograph, and radio tracking was performed during the flyby. A rendezvous maneuver was performed on January 3, 1999 involving a thruster burn to match NEAR's orbital speed to that of Eros. A hydrazine
Hydrazine
Hydrazine is an inorganic compound with the formula N2H4. It is a colourless flammable liquid with an ammonia-like odor. Hydrazine is highly toxic and dangerously unstable unless handled in solution. Approximately 260,000 tons are manufactured annually...
thruster burn took place on January 20 to fine-tune the trajectory. On August 12 a two-minute thruster burn slowed the spacecraft velocity relative to Eros to 300 km/h.
Orbital insertion
Orbital insertion around Eros occurred on 14 February 2000 at 15:33 UT (10:33 AM EST) after NEAR completed a 13 month heliocentric orbit which closely matched the orbit of Eros. A rendezvous maneuver was completed on February 3 at 17:00 UT, slowing the spacecraft from 19.3 to 8.1 m/s relative to Eros. Another maneuver took place on February 8 increasing the relative velocity slightly to 9.9 m/s. Searches for satellites of Eros took place on January 28, and 4 and 9 February, none were found. The scans were for scientific purposes and to mitigate any chances of collision with a satellite. NEAR went into a 321 x 366 km orbit around Eros on February 14. The orbit was slowly decreased to a 35 km circular polar orbit by July 14. NEAR remained in this orbit for 10 days and then was backed out in stages to a 100 km circular orbit by September 5, 2000. Maneuvers in mid-October led to a flyby of Eros within 5.3 km of the surface at 07:00 UT on 26 October.Orbits and landing
Following the flyby NEAR moved to a 200 km circular orbit and shifted the orbit from prograde near-polar to a retrograde near-equatorial orbit. By December 13, 2000 the orbit was shifted back to a circular 35 km low orbit. Starting on January 24, 2001 the spacecraft began a series of close passes (5 to 6 km) to the surface and on January 28 passed 2 to 3 km from the asteroid. The spacecraft then made a slow controlled descent to the surface of Eros ending with a touchdown just to the south of the saddle-shaped feature Himeros on February 12, 2001 at approximately 20:01 UT (3:01 p.m. EST). To the surprise of the controllers, the spacecraft was undamaged and operational after the landing at an estimated speed of 1.5 to 1.8 meters per second (thus becoming the first spacecraft to soft-land on an asteroid). After receiving an extension of antenna time on the Deep Space NetworkDeep Space Network
The Deep Space Network, or DSN, is a world-wide network of large antennas and communication facilities that supports interplanetary spacecraft missions. It also performs radio and radar astronomy observations for the exploration of the solar system and the universe, and supports selected...
, the spacecraft's gamma-ray spectrometer was reprogrammed to collect data on Eros' composition from a vantage point about four inches from the surface where it was ten times more sensitive than when it was used in orbit.
At 7 p.m. EST on February 28, 2001 the last data signals were received from NEAR Shoemaker before it was shut down. A final attempt to communicate with the spacecraft on December 10, 2002 was unsuccessful. This was likely due to the extreme -279 °F (-173 °C, 100 K
Kelvin
The kelvin is a unit of measurement for temperature. It is one of the seven base units in the International System of Units and is assigned the unit symbol K. The Kelvin scale is an absolute, thermodynamic temperature scale using as its null point absolute zero, the temperature at which all...
) conditions the probe experienced while on Eros.
Spacecraft and subsystems
The spacecraft has the shape of an octagonal prism, approximately 1.7 m on a side, with four fixed gallium arsenide solar panelPhotovoltaic module
A solar panel is a packaged, connected assembly of solar cells, also known as photovoltaic cells...
s in a windmill arrangement, a fixed 1.5 m X-band
X band
The X band is a segment of the microwave radio region of the electromagnetic spectrum. In some cases, such as in communication engineering, the frequency range of X band is rather indefinitely set at approximately 7.0 to 11.2 gigahertz . In radar engineering, the frequency range is specified...
high-gain radio antenna with a magnetometer
Magnetometer
A magnetometer is a measuring instrument used to measure the strength or direction of a magnetic field either produced in the laboratory or existing in nature...
mounted on the antenna feed, and an X-ray solar monitor on one end (the forward deck), with the other instruments fixed on the opposite end (the aft deck). Most electronics were mounted on the inside of the decks. The propulsion module was contained in the interior.
The craft was three-axis stabilized and used a single bipropellant (hydrazine
Hydrazine
Hydrazine is an inorganic compound with the formula N2H4. It is a colourless flammable liquid with an ammonia-like odor. Hydrazine is highly toxic and dangerously unstable unless handled in solution. Approximately 260,000 tons are manufactured annually...
/ nitrogen tetroxide) 450 newton (N) main thruster, and four 21 N and seven 3.5 N hydrazine thrusters for propulsion, for a total delta-V
Delta-v
In astrodynamics a Δv or delta-v is a scalar which takes units of speed. It is a measure of the amount of "effort" that is needed to change from one trajectory to another by making an orbital maneuver....
potential of 1450 m/s. Attitude control was achieved using the hydrazine thrusters and four reaction wheels. The propulsion system carried 209 kg of hydrazine and 109 kg of NTO oxidizer in two oxidizer and three fuel tanks.
Power was provided by four 1.8 by 1.2 meter gallium arsenide solar panels which could produce 400 watt
Watt
The watt is a derived unit of power in the International System of Units , named after the Scottish engineer James Watt . The unit, defined as one joule per second, measures the rate of energy conversion.-Definition:...
s at 2.2 AU
Astronomical unit
An astronomical unit is a unit of length equal to about or approximately the mean Earth–Sun distance....
(329,000,000 km), NEAR's maximum distance from the Sun, and 1800 W at one AU (150,000,000 km). Power was stored in a nine ampere-hour, 22-cell rechargeable super nickel-cadmium battery.
Spacecraft guidance was achieved through the use of a sensor suite of five digital solar attitude detectors, an inertial measurement unit, (IMU) and a star tracker camera pointed opposite the instrument pointing direction. The IMU contained hemispherical resonator gyroscope
Gyroscope
A gyroscope is a device for measuring or maintaining orientation, based on the principles of angular momentum. In essence, a mechanical gyroscope is a spinning wheel or disk whose axle is free to take any orientation...
s and accelerometers. Four reaction wheels (arranged so that any three can provide complete three-axis control) were used for normal attitude control. The thrusters were used to dump angular momentum
Angular momentum
In physics, angular momentum, moment of momentum, or rotational momentum is a conserved vector quantity that can be used to describe the overall state of a physical system...
from the reaction wheels, as well as for rapid slew and propulsive maneuvers. Attitude control was to 0.1 degree, line-of-sight pointing stability is within 50 microradians over one second, and post-processing attitude knowledge is to 50 microradians.
The command and data handling subsystem was composed of two redundant command and telemetry processors and solid state recorders, a power switching unit, and an interface to two redundant 1553 standard data buses
MIL-STD-1553
MIL-STD-1553 is a military standard published by the United States Department of Defense that defines the mechanical, electrical, and functional characteristics of a serial data bus. It was originally designed for use with military avionics, but has also become commonly used in spacecraft on-board...
for communications with other subsystems. The solid state recorders are constructed from 16 Mbit IBM Luna-C DRAM
Dram
Dram or DRAM may refer to:As a unit of measure:* Dram , an imperial unit of mass and volume* Armenian dram, a monetary unit* Dirham, a unit of currency in several Arab nationsOther uses:...
s. One recorder has 1.1 gigabit
Gigabit
The gigabit is a multiple of the unit bit for digital information or computer storage. The prefix giga is defined in the International System of Units as a multiplier of 109 , and therefore...
s of storage, the other has 0.67 gigabits.
The NEAR mission was the first launch of NASA's Discovery Program
Discovery Program
NASA's Discovery Program is a series of lower-cost, highly-focused American scientific space missions that are exploring the Solar System. It was founded in 1992 to implement then-NASA Administrator Daniel S. Goldin's vision of "faster, better, cheaper" planetary missions...
, a series of small-scale spacecraft designed to proceed from development to flight in under three years for a cost of less than $150 million. The construction, launch, and 30 day cost for this mission is estimated at $122 million. The final total mission cost was $224 million which consisted of $124.9 million for spacecraft development, $44.6 million for launch support and tracking, and $54.6 million for mission operations and data analysis.