Lanthanide contraction
Encyclopedia
Lanthanide contraction is a term used in chemistry
to describe the decrease in ionic radii
of the elements
in the lanthanide
series from atomic number
58, Cerium
to 71, Lutetium, which results in smaller than otherwise expected ionic radii for the subsequent elements starting with 72, Hafnium
. The term was coined by the Norwegian geochemist Victor Goldschmidt
in his famous series "Geochemische Verteilungsgesetze Der Elemente".
In single-electron atoms, the average separation of an electron from the nucleus is determined by the subshell it belongs to, and decreases with increasing charge on the nucleus; this in turn leads to a decrease in atomic radius
. In multi-electron atoms, the decrease in radius brought about by an increase in nuclear charge is partially offset by increasing electrostatic repulsion among electrons. In particular, a "shielding effect
" operates: i.e., as electrons are added in outer shells, electrons already present shield the outer electrons from nuclear charge, making them experience a lower effective charge on the nucleus. The shielding effect exerted by the inner electrons decreases in the order s > p > d > f. Usually, as a particular subshell is filled in a period, atomic radius decreases. This effect is particularly pronounced in the case of lanthanides, as the 4f subshell which is filled across these elements is not very effective at shielding the outer shell (n=5 and n=6) electrons. Thus the shielding effect is less able to counter the decrease in radius caused by increasing nuclear charge. This leads to "lanthanide contraction". The ionic radius drops from 102 pm for cerium(III) to 86.1 pm for lutetium(III).
About 10% of the lanthanide contraction has been attributed to relativistic effects.
of the lanthanides decrease from 103(La
3+) to 86 pm
(Lu3+) in the lanthanide series.
Across the lanthanide series, electrons are added to the 4f shell. This first f shell is inside the full 5s and 5p shells (as well as the 6s shell in the neutral atom); the 4f shell is well-localized near the atomic nucleus and has little effect on chemical bonding. The decrease in atomic and ionic radii does affect their chemistry, however. Without the lanthanide contraction, a chemical separation
of lanthanides would be extremely difficult. However, this contraction makes the chemical separation of period 5 and period 6 transition metals of the same group rather difficult.
There is a general trend of increasing Vickers hardness, Brinell hardness
, density
and melting point
from cerium
to lutetium (with ytterbium
being the most notable exception). Lutetium is the hardest and densest lanthanide and has the highest melting point.
For example, the atomic radii of the metal zirconium
, Zr, (a period-5 transition element) is 159 pm and that of hafnium
, Hf, (the corresponding period-6 element) is 156 pm. The ionic radius of Zr4+ is 79 pm and that of Hf4+ is 78 pm. The radii are very similar even though the number of electrons increases from 40 to 72 and the atomic mass
increases from 91.22 to 178.49 g/mol. The increase in mass and the unchanged radii lead to a steep increase in density
from 6.51 to 13.35 g/cm3.
Zirconium and hafnium therefore have very similar chemical behaviour, having closely similar radii and electron configurations. Radius-dependent properties such as lattice energies
, solvation energies
, and stability constants of complexes
are also similar. Because of this similarity hafnium is found only in association with zirconium, which is much more abundant, and was discovered as a separate element 134 years later (in 1923) than zirconium (discovered in 1789).
Chemistry
Chemistry is the science of matter, especially its chemical reactions, but also its composition, structure and properties. Chemistry is concerned with atoms and their interactions with other atoms, and particularly with the properties of chemical bonds....
to describe the decrease in ionic radii
Ionic radius
Ionic radius, rion, is the radius of an atom's ion. Although neither atoms nor ions have sharp boundaries, it is important to treat them as if they are hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice...
of the elements
Chemical element
A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. Familiar examples of elements include carbon, oxygen, aluminum, iron, copper, gold, mercury, and lead.As of November 2011, 118 elements...
in the lanthanide
Lanthanide
The lanthanide or lanthanoid series comprises the fifteen metallic chemical elements with atomic numbers 57 through 71, from lanthanum through lutetium...
series from atomic number
Atomic number
In chemistry and physics, the atomic number is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. It is conventionally represented by the symbol Z. The atomic number uniquely identifies a chemical element...
58, Cerium
Cerium
Cerium is a chemical element with the symbol Ce and atomic number 58. It is a soft, silvery, ductile metal which easily oxidizes in air. Cerium was named after the dwarf planet . Cerium is the most abundant of the rare earth elements, making up about 0.0046% of the Earth's crust by weight...
to 71, Lutetium, which results in smaller than otherwise expected ionic radii for the subsequent elements starting with 72, Hafnium
Hafnium
Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869. Hafnium was the penultimate stable...
. The term was coined by the Norwegian geochemist Victor Goldschmidt
Victor Goldschmidt
Victor Moritz Goldschmidt was a mineralogist considered to be the founder of modern geochemistry and crystal chemistry, developer of the Goldschmidt Classification of elements.-Early life & career:Goldschmidt was born in Zürich...
in his famous series "Geochemische Verteilungsgesetze Der Elemente".
Element | Ce Cerium Cerium is a chemical element with the symbol Ce and atomic number 58. It is a soft, silvery, ductile metal which easily oxidizes in air. Cerium was named after the dwarf planet . Cerium is the most abundant of the rare earth elements, making up about 0.0046% of the Earth's crust by weight... | Pr Praseodymium Praseodymium is a chemical element that has the symbol Pr and atomic number 59. Praseodymium is a soft, silvery, malleable and ductile metal in the lanthanide group. It is too reactive to be found in native form, and when artificially prepared, it slowly develops a green oxide coating.The element... | Nd Neodymium Neodymium is a chemical element with the symbol Nd and atomic number 60. It is a soft silvery metal that tarnishes in air. Neodymium was discovered in 1885 by the Austrian chemist Carl Auer von Welsbach. It is present in significant quantities in the ore minerals monazite and bastnäsite... | Pm Promethium Promethium is a chemical element with the symbol Pm and atomic number 61. It is notable for being the only exclusively radioactive element besides technetium that is followed by chemical elements with stable isotopes.- Prediction :... | Sm Samarium Samarium is a chemical element with the symbol Sm, atomic number 62 and atomic weight 150.36. It is a moderately hard silvery metal which readily oxidizes in air. Being a typical member of the lanthanide series, samarium usually assumes the oxidation state +3... | Eu Europium Europium is a chemical element with the symbol Eu and atomic number 63. It is named after the continent of Europe. It is a moderately hard silvery metal which readily oxidizes in air and water... | Gd Gadolinium Gadolinium is a chemical element with the symbol Gd and atomic number 64. It is a silvery-white, malleable and ductile rare-earth metal. It is found in nature only in combined form. Gadolinium was first detected spectroscopically in 1880 by de Marignac who separated its oxide and is credited with... | Tb Terbium Terbium is a chemical element with the symbol Tb and atomic number 65. It is a silvery-white rare earth metal that is malleable, ductile and soft enough to be cut with a knife... | Dy Dysprosium Dysprosium is a chemical element with the symbol Dy and atomic number 66. It is a rare earth element with a metallic silver luster. Dysprosium is never found in nature as a free element, though it is found in various minerals, such as xenotime... | Ho Holmium Holmium is a chemical element with the symbol Ho and atomic number 67. Part of the lanthanide series, holmium is a rare earth element. Its oxide was first isolated from rare earth ores in 1878 and the element was named after the city of Stockholm.... | Er Erbium Erbium is a chemical element in the lanthanide series, with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements on Earth... | Tm Thulium Thulium is a chemical element that has the symbol Tm and atomic number 69. Thulium is the second least abundant of the lanthanides . It is an easily workable metal with a bright silvery-gray luster... | Yb Ytterbium Ytterbium is a chemical element with the symbol Yb and atomic number 70. A soft silvery metallic element, ytterbium is a rare earth element of the lanthanide series and is found in the minerals gadolinite, monazite, and xenotime. The element is sometimes associated with yttrium or other related... | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atomic electron configuration (all begin with [Xe]) |
4f15d16s2 | 4f36s2 | 4f46s2 | 4f56s2 | 4f66s2 | 4f76s2 | 4f75d16s2 | 4f96s2 | 4f106s2 | 4f116s2 | 4f126s2 | 4f136s2 | 4f146s2 | 4f145d16s2 |
Ln3+ electron configuration | 4f1 | 4f2 | 4f3 | 4f4 | 4f5 | 4f6 | 4f7 | 4f8 | 4f9 | 4f10 | 4f11 | 4f12 | 4f13 | 4f14 |
Ln3+ radius (pm) (6-coordinate) | 102 | 99 | 98.3 | 97 | 95.8 | 94.7 | 93.8 | 92.3 | 91.2 | 90.1 | 89 | 88 | 86.8 | 86.1 |
Cause
The effect results from poor shielding of nuclear charge (nuclear attractive force on electrons) by 4f electrons; the 6s electrons are drawn towards the nucleus, thus resulting in a smaller atomic radius.In single-electron atoms, the average separation of an electron from the nucleus is determined by the subshell it belongs to, and decreases with increasing charge on the nucleus; this in turn leads to a decrease in atomic radius
Atomic radius
The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the nucleus to the boundary of the surrounding cloud of electrons...
. In multi-electron atoms, the decrease in radius brought about by an increase in nuclear charge is partially offset by increasing electrostatic repulsion among electrons. In particular, a "shielding effect
Shielding effect
The shielding effect describes the decrease in attraction between an electron and the nucleus in any atom with more than one electron shell. It is also referred to as the screening effect or atomic shielding.-Cause:...
" operates: i.e., as electrons are added in outer shells, electrons already present shield the outer electrons from nuclear charge, making them experience a lower effective charge on the nucleus. The shielding effect exerted by the inner electrons decreases in the order s > p > d > f. Usually, as a particular subshell is filled in a period, atomic radius decreases. This effect is particularly pronounced in the case of lanthanides, as the 4f subshell which is filled across these elements is not very effective at shielding the outer shell (n=5 and n=6) electrons. Thus the shielding effect is less able to counter the decrease in radius caused by increasing nuclear charge. This leads to "lanthanide contraction". The ionic radius drops from 102 pm for cerium(III) to 86.1 pm for lutetium(III).
About 10% of the lanthanide contraction has been attributed to relativistic effects.
Effects
The results of the increased attraction of the outer shell electrons across the lanthanide period may be divided into effects on the lanthanide series itself including the decrease in ionic radii, and influences on the following or post-lanthanide elements.Properties of the lanthanides
The ionic radiiIonic radius
Ionic radius, rion, is the radius of an atom's ion. Although neither atoms nor ions have sharp boundaries, it is important to treat them as if they are hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice...
of the lanthanides decrease from 103(La
Lanthanum
Lanthanum is a chemical element with the symbol La and atomic number 57.Lanthanum is a silvery white metallic element that belongs to group 3 of the periodic table and is the first element of the lanthanide series. It is found in some rare-earth minerals, usually in combination with cerium and...
3+) to 86 pm
Picometre
A picometre is a unit of length in the metric system, equal to one trillionth, i.e. of a metre, which is the current SI base unit of length...
(Lu3+) in the lanthanide series.
Across the lanthanide series, electrons are added to the 4f shell. This first f shell is inside the full 5s and 5p shells (as well as the 6s shell in the neutral atom); the 4f shell is well-localized near the atomic nucleus and has little effect on chemical bonding. The decrease in atomic and ionic radii does affect their chemistry, however. Without the lanthanide contraction, a chemical separation
Separation process
In chemistry and chemical engineering, a separation process, or simply a separation, is any mass transfer process used to convert a mixture of substances into two or more distinct product mixtures, at least one of which is enriched in one or more of the mixture's constituents. In some cases, a...
of lanthanides would be extremely difficult. However, this contraction makes the chemical separation of period 5 and period 6 transition metals of the same group rather difficult.
There is a general trend of increasing Vickers hardness, Brinell hardness
Brinell scale
The Brinell scale characterizes the indentation hardness of materials through the scale of penetration of an indenter, loaded on a material test-piece. It is one of several definitions of hardness in materials science....
, density
Density
The mass density or density of a material is defined as its mass per unit volume. The symbol most often used for density is ρ . In some cases , density is also defined as its weight per unit volume; although, this quantity is more properly called specific weight...
and melting point
Melting point
The melting point of a solid is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at standard atmospheric pressure...
from cerium
Cerium
Cerium is a chemical element with the symbol Ce and atomic number 58. It is a soft, silvery, ductile metal which easily oxidizes in air. Cerium was named after the dwarf planet . Cerium is the most abundant of the rare earth elements, making up about 0.0046% of the Earth's crust by weight...
to lutetium (with ytterbium
Ytterbium
Ytterbium is a chemical element with the symbol Yb and atomic number 70. A soft silvery metallic element, ytterbium is a rare earth element of the lanthanide series and is found in the minerals gadolinite, monazite, and xenotime. The element is sometimes associated with yttrium or other related...
being the most notable exception). Lutetium is the hardest and densest lanthanide and has the highest melting point.
Influence on the post-lanthanides
The elements following the lanthanides in the periodic table are influenced by the lanthanide contraction. The radii of the period-6 transition metals are smaller than would be expected if there were no lanthanides, and are in fact very similar to the radii of the period-5 transition metals, since the effect of the additional electron shell is almost entirely offset by the lanthanide contraction.For example, the atomic radii of the metal zirconium
Zirconium
Zirconium is a chemical element with the symbol Zr and atomic number 40. The name of zirconium is taken from the mineral zircon. Its atomic mass is 91.224. It is a lustrous, grey-white, strong transition metal that resembles titanium...
, Zr, (a period-5 transition element) is 159 pm and that of hafnium
Hafnium
Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869. Hafnium was the penultimate stable...
, Hf, (the corresponding period-6 element) is 156 pm. The ionic radius of Zr4+ is 79 pm and that of Hf4+ is 78 pm. The radii are very similar even though the number of electrons increases from 40 to 72 and the atomic mass
Atomic mass
The atomic mass is the mass of a specific isotope, most often expressed in unified atomic mass units. The atomic mass is the total mass of protons, neutrons and electrons in a single atom....
increases from 91.22 to 178.49 g/mol. The increase in mass and the unchanged radii lead to a steep increase in density
Density
The mass density or density of a material is defined as its mass per unit volume. The symbol most often used for density is ρ . In some cases , density is also defined as its weight per unit volume; although, this quantity is more properly called specific weight...
from 6.51 to 13.35 g/cm3.
Zirconium and hafnium therefore have very similar chemical behaviour, having closely similar radii and electron configurations. Radius-dependent properties such as lattice energies
Lattice energy
The lattice energy of an ionic solid is a measure of the strength of bonds in that ionic compound. It is usually defined as the enthalpy of formation of the ionic compound from gaseous ions and as such is invariably exothermic. Lattice energy may also be defined as the energy required to completely...
, solvation energies
Solvation
Solvation, also sometimes called dissolution, is the process of attraction and association of molecules of a solvent with molecules or ions of a solute...
, and stability constants of complexes
Stability constants of complexes
A stability constant is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex...
are also similar. Because of this similarity hafnium is found only in association with zirconium, which is much more abundant, and was discovered as a separate element 134 years later (in 1923) than zirconium (discovered in 1789).