Dense-in-itself
Encyclopedia
In mathematics
, a subset
of a topological space
is said to be dense-in-itself if contains no isolated point
s.
Every dense-in-itself closed set
is perfect. Conversely, every perfect set is dense-in-itself.
A simple example of a set which is dense-in-itself but not closed (and hence not a perfect set) is the subset of irrational numbers. This set is dense-in-itself because every neighborhood
of an irrational number contains at least one other irrational number . On the other hand, this set of irrationals is not closed because every rational number lies in its closure
. For similar reasons, the set of rational numbers is also dense-in-itself but not closed.
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...
, a subset
Subset
In mathematics, especially in set theory, a set A is a subset of a set B if A is "contained" inside B. A and B may coincide. The relationship of one set being a subset of another is called inclusion or sometimes containment...
of a topological space
Topological space
Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion...
is said to be dense-in-itself if contains no isolated point
Isolated point
In topology, a branch of mathematics, a point x of a set S is called an isolated point of S, if there exists a neighborhood of x not containing other points of S.In particular, in a Euclidean space ,...
s.
Every dense-in-itself closed set
Closed set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points...
is perfect. Conversely, every perfect set is dense-in-itself.
A simple example of a set which is dense-in-itself but not closed (and hence not a perfect set) is the subset of irrational numbers. This set is dense-in-itself because every neighborhood
Neighbourhood (mathematics)
In topology and related areas of mathematics, a neighbourhood is one of the basic concepts in a topological space. Intuitively speaking, a neighbourhood of a point is a set containing the point where you can move that point some amount without leaving the set.This concept is closely related to the...
of an irrational number contains at least one other irrational number . On the other hand, this set of irrationals is not closed because every rational number lies in its closure
Closure (topology)
In mathematics, the closure of a subset S in a topological space consists of all points in S plus the limit points of S. Intuitively, these are all the points that are "near" S. A point which is in the closure of S is a point of closure of S...
. For similar reasons, the set of rational numbers is also dense-in-itself but not closed.
See also
- Dense setDense setIn topology and related areas of mathematics, a subset A of a topological space X is called dense if any point x in X belongs to A or is a limit point of A...
- Nowhere dense setNowhere dense setIn mathematics, a nowhere dense set in a topological space is a set whose closure has empty interior. The order of operations is important. For example, the set of rational numbers, as a subset of R has the property that the closure of the interior is empty, but it is not nowhere dense; in fact it...
- Dense orderDense orderIn mathematics, a partial order ≤ on a set X is said to be dense if, for all x and y in X for which x In mathematics, a partial order ≤ on a set X is said to be dense if, for all x and y in X for which x...
- Perfect spacePerfect spaceIn mathematics, in the field of topology, perfect spaces are spaces that have no isolated points. In such spaces, every point can be approximated arbitrarily well by other points - given any point and any topological neighborhood of the point, there is another point within the neighborhood.The...