Charles Wheatstone
Encyclopedia
Sir Charles Wheatstone FRS (6 February 1802 – 19 October 1875), was an English
scientist
and inventor of many scientific breakthroughs of the Victorian era
, including the English concertina
, the stereoscope (a device for displaying three-dimensional images), and the Playfair cipher
(an encryption
technique). However, Wheatstone is best known for his contributions in the development of the Wheatstone bridge
, originally invented by Samuel Hunter Christie
, which is used to measure an unknown electrical resistance, and as a major figure in the development of telegraphy
.
, four years later, becoming a teacher of the flute. Charles, the second son, went to a village school, near Gloucester, and afterwards to several institutions in London. One of them was in Kennington
, and kept by a Mrs. Castlemaine, who was astonished at his rapid progress. From another he ran away, but was captured at Windsor
, not far from the theatre of his practical telegraph. As a boy he was very shy and sensitive, liking well to retire into an attic, without any other company than his own thoughts.
When he was about fourteen years old he was apprenticed to his uncle and namesake, a maker and seller of musical instruments (such as the Wheatstone concertina), at 436 Strand, London; but he showed little taste for handicraft or business, and loved better to study books. His father encouraged him in this, and finally took him out of the uncle's charge.
At the age of fifteen, Wheatstone translated French
poetry, and wrote two songs, one of which was given to his uncle, who published it without knowing it as his nephew's composition. Some lines of his on the lyre
became the motto of an engraving by Bartolozzi
. Small for his age, but with a fine brow, and intelligent blue eyes, he often visited an old book-stall in the vicinity of Pall Mall, which was then a dilapidated and unpaved thoroughfare. Most of his pocket-money was spent in purchasing the books which had taken his fancy, whether fairy tales, history, or science. One day, to the surprise of the bookseller, he coveted a volume on the discoveries of Volta
in electricity
, but not having the price, he saved his pennies and secured the volume. It was written in French, and so he was obliged to save again, until he could buy a dictionary. Then he began to read the volume, and, with the help of his elder brother, William, to repeat the experiments described in it, with a home-made battery, in the scullery behind his father's house. In constructing the battery, the boy philosophers ran short of money to procure the requisite copper-plates. They had only a few copper coins left. A happy thought occurred to Charles, who was the leading spirit in these researches, 'We must use the pennies themselves,' said he, and the battery was soon complete.
At Christchurch, Marylebone
, on 12 February 1847, Wheatstone was married. His wife was the daughter of a Taunton
tradesman, and of handsome appearance. She died in 1866, leaving a family of five young children to his care. His domestic life was quiet and uneventful.
Though silent and reserved in public, Wheatstone was a clear and voluble talker in private, if taken on his favourite studies, and his small but active person, his plain but intelligent countenance, was full of animation. Sir Henry Taylor tells us that he once observed Wheatstone at an evening party in Oxford earnestly holding forth to Lord Palmerston on the capabilities of his telegraph. 'You don't say so!' exclaimed the statesman. 'I must get you to tell that to the Lord Chancellor.' And so saying, he fastened the electrician on Lord Westbury, and effected his escape. A reminiscence of this interview may have prompted Palmerston to remark that a time was coming when a minister might be asked in Parliament if war had broken out in India, and would reply, 'Wait a minute; I'll just telegraph to the Governor-General, and let you know.'
Wheatstone was knighted in 1868, after his completion of the automatic telegraph. He had previously been made a Chevalier of the Legion of Honour. Some thirty-four distinctions and diplomas of home or foreign societies bore witness to his scientific reputation. Since 1836 he had been a Fellow of the Royal Society, and in 1859 he was elected a foreign member of the Royal Swedish Academy of Sciences
, and in 1873 a Foreign Associate of the French Academy of Sciences
. The same year he was awarded the Ampere Medal by the French Society for the Encouragement of National Industry. In 1875 he was created an honorary member of the Institution of Civil Engineers. He was a D.C.L. of Oxford and an LL.D. of Cambridge.
While on a visit to Paris during the autumn of 1875, and engaged in perfecting his receiving instrument for submarine cables, he caught a cold, which produced inflammation of the lungs, an illness from which he died in Paris, on 19 October 1875. A memorial service was held in the Anglican Chapel, Paris, and attended by a deputation of the Academy. His remains were taken to his home in Park Crescent, London, (marked by a blue plaque today) and buried in Kensal Green Cemetery
.
, harp
, and dulcimer
. In reality it was a mere sounding box, and the cord was a steel rod that conveyed the vibrations of the music from the several instruments which were played out of sight and ear-shot. At this period Wheatstone made numerous experiments on sound and its transmission. Some of his results are preserved in Thomson's Annals of Philosophy for 1823. He recognised that sound is propagated by waves or oscillations of the atmosphere, as light was then believed to be by undulations of the luminiferous ether. Water, and solid bodies, such as glass, or metal, or sonorous wood, convey the modulations with high velocity, and he conceived the plan of transmitting sound-signals, music, or speech to long distances by this means. He estimated that sound would travel 200 miles per second (322 km/s) through solid rods, and proposed to telegraph from London
to Edinburgh
in this way. He even called his arrangement a 'telephone.' (Robert Hooke
, in his Micrographia
, published in 1667, writes: 'I can assure the reader that I have, by the help of a distended wire, propagated the sound to a very considerable distance in an instant, or with as seemingly quick a motion as that of light.' Nor was it essential the wire should be straight; it might be bent into angles. This property is the basis of the mechanical or lover's telephone, said to have been known to the Chinese many centuries ago. Hooke also considered the possibility of finding a way to quicken our powers of hearing.) A writer in the Repository of Arts for 1 September 1821, in referring to the 'Enchanted Lyre,' beholds the prospect of an opera being performed at the King's Theatre, and enjoyed at the Hanover Square Rooms
, or even at the Horns Tavern, Kennington. The vibrations are to travel through underground conductors, like to gas in pipes.
Besides transmitting sounds to a distance, Wheatstone devised a simple instrument for augmenting feeble sounds, to which he gave the name of 'Microphone.' It consisted of two slender rods, which conveyed the mechanical vibrations to both ears, and is quite different from the electrical microphone of Professor Hughes.
In 1823, his uncle, the musical instrument maker, died, and Wheatstone, with his elder brother, William, took over the business. Charles had no great liking for the commercial part, but his ingenuity found a vent in making improvements on the existing instruments, and in devising philosophical toys. At the end of six years he retired from the undertaking.
In 1827, Wheatstone introduced his 'kaleidophone', a device for rendering the vibrations of a sounding body apparent to the eye. It consists of a metal rod, carrying at its end a silvered bead, which reflects a 'spot' of light. As the rod vibrates the spot is seen to describe complicated figures in the air, like a spark whirled about in the darkness. His photometer
was probably suggested by this appliance. It enables two lights to be compared by the relative brightness of their reflections in a silvered bead, which describes a narrow ellipse, so as to draw the spots into parallel lines.
In 1828, Wheatstone improved the German wind instrument, called the Mundharmonika, until it became the popular concertina, patented on 19 December 1829 http://www.concertina.com/patents/index.htm#wheatstone-patent-1829. The portable harmonium
is another of his inventions, which gained a prize medal at the Great Exhibition of 1851. He also improved the speaking machine of De Kempelen
, and endorsed the opinion of Sir David Brewster
, that before the end of this century a singing and talking apparatus would be among the conquests of science.
In 1834, Wheatstone, who had won a name for himself, was appointed to the Chair of Experimental Physics in King's College London
. But his first course of lectures on Sound were a complete failure, owing to an invincible repugnance to public speaking, and a distrust of his powers in that direction. In the rostrum he was tongue-tied and incapable, sometimes turning his back on the audience and mumbling to the diagrams on the wall. In the laboratory he felt himself at home, and ever after confined his duties mostly to demonstration.
filled with electricity. Three sparks were thus produced, one at either end of the wire, and another at the middle. He mounted a tiny mirror on the works of a watch, so that it revolved at a high velocity, and observed the reflections of his three sparks in it. The points of the wire were so arranged that if the sparks were instantaneous, their reflections would appear in one straight line; but the middle one was seen to lag behind the others, because it was an instant later. The electricity had taken a certain time to travel from the ends of the wire to the middle. This time was found by measuring the amount of lag, and comparing it with the known velocity of the mirror. Having got the time, he had only to compare that with the length of half the wire, and he could find the velocity of electricity. His results gave a calculated velocity of 288,000 miles per second, i.e. faster than what we now know to be the speed of light, but were nonetheless an interesting approximation.
It was afterwards found that the velocity of an electric field travelling in a cable depends on the nature of the conductor, its resistance, and its electro-static capacity. Michael Faraday
showed, for example, that its velocity in a submarine wire, coated with insulator and surrounded with water, is only 144,000 miles per second (232,000 km/s), or still less. Wheatstone's device of the revolving mirror was afterwards employed by Léon Foucault
and Hippolyte Fizeau
to measure the velocity of light
.
As John Munro wrote in 1891, "In 1835, at the Dublin meeting of the British Association, Wheatstone showed that when metals were volatilised in the electric spark, their light, examined through a prism, revealed certain rays which were characteristic of them. Thus the kind of metals which formed the sparking points could be determined by analysing the light of the spark. This suggestion has been of great service in spectrum analysis, and as applied by Robert Bunsen
, Gustav Robert Kirchhoff, and others, has led to the discovery of several new elements, such as rubidium
and thallium
, as well as increasing our knowledge of the heavenly bodies."
at his house in Conduit Street on 27 February 1837, which had an important influence on his future.
, was attending some lectures on anatomy at the University of Heidelberg, where, on 6 March 1836, he witnessed a demonstration with the telegraph of Professor
Moncke, and was so impressed with its importance, that he forsook his medical studies and devoted all his efforts to the work of introducing the telegraph. He returned to London soon after, and was able to exhibit a telegraph with three needles in January, 1837. Feeling his want of scientific knowledge, he consulted Faraday and Dr. Roget, the latter of whom sent him to Wheatstone.
At a second interview, Mr. Cooke told Wheatstone of his intention to bring out a working telegraph, and explained his method. Wheatstone, according to his own statement, remarked to Cooke that the method would not act, and produced his own experimental telegraph. Finally, Cooke proposed that they should enter into a partnership, but Wheatstone was at first reluctant to comply. He was a well-known man of science, and had meant to publish his results without seeking to make capital of them. Cooke, on the other hand, declared that his sole object was to make a fortune from the scheme. In May they agreed to join their forces, Wheatstone contributing the scientific, and Cooke the administrative talent. The deed of partnership was dated 19 November 1837. A joint patent was taken out for their inventions, including the five-needle telegraph of Wheatstone, and an alarm worked by a relay, in which the current, by dipping a needle into mercury, completed a local circuit, and released the detent of a clockwork.
The five-needle telegraph, which was mainly, if not entirely, due to Wheatstone, was similar to that of Schilling, and based on the principle enunciated by André-Marie Ampère
— that is to say, the current was sent into the line by completing the circuit of the battery with a make and break key, and at the other end it passed through a coil of wire surrounding a magnetic needle free to turn round its centre. According as one pole of the battery or the other was applied to the line by means of the key, the current deflected the needle to one side or the other. There were five separate circuits actuating five different needles. The latter were pivoted in rows across the middle of a dial shaped like a diamond, and having the letters of the alphabet arranged upon it in such a way that a letter was literally pointed out by the current deflecting two of the needles towards it.
terminus and Camden Town
station of the London and North Western Railway on 25 July 1837. The actual distance was only one and a half mile (2.4 km), but spare wire had been inserted in the circuit to increase its length. It was late in the evening before the trial took place. Mr Cooke was in charge at Camden Town, while Mr Robert Stephenson
and other gentlemen looked on; and Wheatstone sat at his instrument in a dingy little room, lit by a tallow candle, near the booking-office at Euston. Wheatstone sent the first message, to which Cooke replied, and 'never' said Wheatstone, 'did I feel such a tumultuous sensation before, as when, all alone in the still room, I heard the needles click, and as I spelled the words, I felt all the magnitude of the invention pronounced to be practicable beyond cavil or dispute.'
In spite of this trial, however, the directors of the railway treated the 'new-fangled' invention with indifference, and requested its removal. In July 1839, however, it was favoured by the Great Western Railway
, and a line erected from the Paddington station
terminus to West Drayton railway station
, a distance of thirteen miles (21 km). Part of the wire was laid underground at first, but subsequently all of it was raised on posts along the line. Their circuit was eventually extended to in 1841, and was publicly exhibited at Paddington as a marvel of science, which could transmit fifty signals a distance of 280,000 miles per minute (7,500 km/s). The price of admission was a shilling (£0.05), and in 1844 one fascinated observer recorded the following:
, who In 1845, had become the first person to be arrested as the result of telecommunications technology. In the same year, Wheatstone introduced two improved forms of the apparatus, namely, the 'single' and the 'double' needle instruments, in which the signals were made by the successive deflections of the needles. Of these, the single-needle instrument, requiring only one wire, is still in use.
The development of the telegraph may be gathered from two facts. In 1855, the death of the Emperor Nicholas
at St. Petersburg, about one o'clock in the afternoon, was announced in the House of Lords a few hours later. The result of the Oaks
of 1890 was received in New York fifteen seconds after the horses passed the winning-post.
, on behalf of Cooke, and Professor Daniell, of King's College, the inventor of the Daniell battery, on the part of Wheatstone. They awarded to Cooke the credit of having introduced the telegraph as a useful undertaking which promised to be of national importance, and to Wheatstone that of having by his researches prepared the public to receive it. They concluded with the words: 'It is to the united labours of two gentlemen so well qualified for mutual assistance that we must attribute the rapid progress which this important invention has made during five years since they have been associated.' The decision, however vague, pronounces the needle telegraph a joint production. If it had mainly been invented by Wheatstone, it was chiefly introduced by Cooke. Their respective shares in the undertaking might be compared to that of an author and his publisher, but for the fact that Cooke himself had a share in the actual work of invention.
to Calais
. He had even designed the machinery for making and laying the cable. In the autumn of 1844, with the assistance of Mr. J. D. Llewellyn, he submerged a length of insulated wire in Swansea Bay, and signalled through it from a boat to the Mumbles Lighthouse. Next year he suggested the use of gutta-percha
for the coating of the intended wire across the English Channel
.
In 1840 Wheatstone had patented an alphabetical telegraph, or, 'Wheatstone A B C instrument,' which moved with a step-by-step motion, and showed the letters of the message upon a dial. The same principle was utilised in his type-printing telegraph, patented in 1841. This was the first apparatus which printed a telegram in type. It was worked by two circuits, and as the type revolved a hammer, actuated by the current, pressed the required letter on the paper.
The introduction of the telegraph had so far advanced that, on 2 September 1845, the Electric Telegraph Company
was registered, and Wheatstone, by his deed of partnership with Cooke, received a sum of £33,000 for the use of their joint inventions.
In 1859 Wheatstone was appointed by the Board of Trade to report on the subject of the Atlantic cables, and in 1864 he was one of the experts who advised the Atlantic Telegraph Company
on the construction of the successful lines of 1865 and 1866.
In 1870 the electric telegraph lines of the United Kingdom, worked by different companies, were transferred to the Post Office, and placed under Government control.
Wheatstone further invented the automatic transmitter, in which the signals of the message are first punched out on a strip of paper, which is then passed through the sending-key, and controls the signal currents. By substituting a mechanism for the hand in sending the message, he was able to telegraph about 100 words a minute, or five times the ordinary rate. In the Postal Telegraph service this apparatus is employed for sending Press telegrams, and it has recently been so much improved, that messages are now sent from London to Bristol at a speed of 600 words a minute, and even of 400 words a minute between London and Aberdeen. On the night of 8 April 1886, when Mr. Gladstone introduced his Bill for Home Rule in Ireland, no fewer than 1,500,000 words were dispatched from the central station at St. Martin's-le-Grand by 100 Wheatstone transmitters. The plan of sending messages by a running strip of paper which actuates the key was originally patented by Bain in 1846; but Wheatstone, aided by Mr. Augustus Stroh, an accomplished mechanician, and an able experimenter, was the first to bring the idea into successful operation.
was first described by Wheatstone in 1838. In 1840 he was awarded the Royal Medal of the Royal Society for his explanation of binocular vision
, a research which led him to make stereoscopic drawings and construct the stereoscope. He showed that our impression of solidity is gained by the combination in the mind of two separate pictures of an object taken by both of our eyes from different points of view. Thus, in the stereoscope, an arrangement of lenses or mirrors, two photographs of the same object taken from different points are so combined as to make the object stand out with a solid aspect. Sir David Brewster
improved the stereoscope by dispensing with the mirrors, and bringing it into its existing form with lenses.
The 'pseudoscope
' (Wheatstone coined the term from the Greek ψευδίς σκοπειν) was introduced in 1852, and is in some sort the reverse of the stereoscope, since it causes a solid object to seem hollow, and a nearer one to be farther off; thus, a bust appears to be a mask, and a tree growing outside of a window looks as if it were growing inside the room. Its purpose was to test his theory of stereo vision and for investigations into what would now be called experimental psychology.
On 26 November 1840, he exhibited his electro-magnetic clock in the library of the Royal Society, and propounded a plan for distributing the correct time from a standard clock to a number of local timepieces. The circuits of these were to be electrified by a key or contact-maker actuated by the arbour of the standard, and their hands corrected by electro-magnetism. The following January Alexander Bain
took out a patent for an electro-magnetic clock, and he subsequently charged Wheatstone with appropriating his ideas. It appears that Bain worked as a mechanist to Wheatstone from August to December, 1840, and he asserted that he had communicated the idea of an electric clock to Wheatstone during that period; but Wheatstone maintained that he had experimented in that direction during May. Bain further accused Wheatstone of stealing his idea of the electro-magnetic printing telegraph; but Wheatstone showed that the instrument was only a modification of his own electro-magnetic telegraph.
One of Wheatstone's most ingenious devices was the 'Polar clock,' exhibited at the meeting of the British Association in 1848. It is based on the fact discovered by Sir David Brewster
, that the light of the sky is polarised in a plane at an angle of ninety degrees from the position of the sun. It follows that by discovering that plane of polarisation, and measuring its azimuth with respect to the north, the position of the sun, although beneath the horizon, could be determined, and the apparent solar time obtained. The clock consisted of a spyglass, having a nicol (double-image) prism
for an eyepiece, and a thin plate of selenite for an object-glass. When the tube was directed to the North Pole—that is, parallel to the Earth's axis—and the prism of the eyepiece turned until no colour was seen, the angle of turning, as shown by an index moving with the prism over a graduated limb, gave the hour of day. The device is of little service in a country where watches are reliable; but it formed part of the equipment of the 1875-1876 North Polar expedition
commanded by Captain Nares.
or balance, although it was first devised by Samuel Hunter Christie
, of the Royal Military Academy, Woolwich, who published it in the Philosophical Transactions for 1833. The method was neglected until Wheatstone brought it into notice. His paper abounds with simple and practical formulae for the calculation of currents and resistances by the law of Ohm. He introduced a unit of resistance, namely, a foot of copper wire weighing one hundred grains (6.5 g), and showed how it might be applied to measure the length of wire by its resistance. He was awarded a medal for his paper by the Society. The same year he invented an apparatus which enabled the reading of a thermometer or a barometer to be registered at a distance by means of an electric contact made by the mercury. A sound telegraph, in which the signals were given by the strokes of a bell, was also patented by Cooke and Wheatstone in May of that year.
, named after his friend Lord Playfair
. It was used by the militaries of several nations through at least World War I, and is known to have been used during World War II by British intelligence services.
It was initially resistant to cryptoanalysis, but methods were eventually developed to break it. He also became involved in the interpretation of cypher manuscripts in the British Museum. He devised a cryptograph or machine for turning a message into cypher which could only be interpreted by putting the cypher into a corresponding machine adjusted to decrypt it.
On 4 February 1867, he published the principle of reaction in the dynamo-electric machine by a paper to the Royal Society; but Mr. C. W. Siemens had communicated the identical discovery ten days earlier, and both papers were read on the same day.
It afterwards appeared that Werner von Siemens, Samuel Alfred Varley, and Wheatstone had independently arrived at the principle within a few months of each other. Varley patented it on 24 December 1866; Siemens called attention to it on January 17, 1867; and Wheatstone exhibited it in action at the Royal Society on the above date.
England
England is a country that is part of the United Kingdom. It shares land borders with Scotland to the north and Wales to the west; the Irish Sea is to the north west, the Celtic Sea to the south west, with the North Sea to the east and the English Channel to the south separating it from continental...
scientist
Scientist
A scientist in a broad sense is one engaging in a systematic activity to acquire knowledge. In a more restricted sense, a scientist is an individual who uses the scientific method. The person may be an expert in one or more areas of science. This article focuses on the more restricted use of the word...
and inventor of many scientific breakthroughs of the Victorian era
Victorian era
The Victorian era of British history was the period of Queen Victoria's reign from 20 June 1837 until her death on 22 January 1901. It was a long period of peace, prosperity, refined sensibilities and national self-confidence...
, including the English concertina
Concertina
A concertina is a free-reed musical instrument, like the various accordions and the harmonica. It has a bellows and buttons typically on both ends of it. When pressed, the buttons travel in the same direction as the bellows, unlike accordion buttons which travel perpendicularly to it...
, the stereoscope (a device for displaying three-dimensional images), and the Playfair cipher
Playfair cipher
The Playfair cipher or Playfair square is a manual symmetric encryption technique and was the first literal digraph substitution cipher. The scheme was invented in 1854 by Charles Wheatstone, but bears the name of Lord Playfair who promoted the use of the cipher.The technique encrypts pairs of...
(an encryption
Encryption
In cryptography, encryption is the process of transforming information using an algorithm to make it unreadable to anyone except those possessing special knowledge, usually referred to as a key. The result of the process is encrypted information...
technique). However, Wheatstone is best known for his contributions in the development of the Wheatstone bridge
Wheatstone bridge
A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. Its operation is similar to the original potentiometer. It was invented by Samuel Hunter Christie in 1833 and...
, originally invented by Samuel Hunter Christie
Samuel Hunter Christie
Samuel Hunter Christie was a British scientist and mathematician.He studied mathematics at Trinity College, Cambridge where he was second wrangler. He was particularly interested in magnetism, studying the earth's magnetic field and designing improvements to the magnetic compass...
, which is used to measure an unknown electrical resistance, and as a major figure in the development of telegraphy
Telegraphy
Telegraphy is the long-distance transmission of messages via some form of signalling technology. Telegraphy requires messages to be converted to a code which is known to both sender and receiver...
.
Life
Charles Wheatstone was born near Gloucester. His father was a music-seller in the town, who moved to 128 Pall Mall, LondonLondon
London is the capital city of :England and the :United Kingdom, the largest metropolitan area in the United Kingdom, and the largest urban zone in the European Union by most measures. Located on the River Thames, London has been a major settlement for two millennia, its history going back to its...
, four years later, becoming a teacher of the flute. Charles, the second son, went to a village school, near Gloucester, and afterwards to several institutions in London. One of them was in Kennington
Kennington
Kennington is a district of South London, England, mainly within the London Borough of Lambeth, although part of the area is within the London Borough of Southwark....
, and kept by a Mrs. Castlemaine, who was astonished at his rapid progress. From another he ran away, but was captured at Windsor
Windsor, Berkshire
Windsor is an affluent suburban town and unparished area in the Royal Borough of Windsor and Maidenhead in Berkshire, England. It is widely known as the site of Windsor Castle, one of the official residences of the British Royal Family....
, not far from the theatre of his practical telegraph. As a boy he was very shy and sensitive, liking well to retire into an attic, without any other company than his own thoughts.
When he was about fourteen years old he was apprenticed to his uncle and namesake, a maker and seller of musical instruments (such as the Wheatstone concertina), at 436 Strand, London; but he showed little taste for handicraft or business, and loved better to study books. His father encouraged him in this, and finally took him out of the uncle's charge.
At the age of fifteen, Wheatstone translated French
French language
French is a Romance language spoken as a first language in France, the Romandy region in Switzerland, Wallonia and Brussels in Belgium, Monaco, the regions of Quebec and Acadia in Canada, and by various communities elsewhere. Second-language speakers of French are distributed throughout many parts...
poetry, and wrote two songs, one of which was given to his uncle, who published it without knowing it as his nephew's composition. Some lines of his on the lyre
Lyre
The lyre is a stringed musical instrument known for its use in Greek classical antiquity and later. The word comes from the Greek "λύρα" and the earliest reference to the word is the Mycenaean Greek ru-ra-ta-e, meaning "lyrists", written in Linear B syllabic script...
became the motto of an engraving by Bartolozzi
Francesco Bartolozzi
Francesco Bartolozzi was an Italian engraver, whose most productive period was spent in London.He was born in Florence...
. Small for his age, but with a fine brow, and intelligent blue eyes, he often visited an old book-stall in the vicinity of Pall Mall, which was then a dilapidated and unpaved thoroughfare. Most of his pocket-money was spent in purchasing the books which had taken his fancy, whether fairy tales, history, or science. One day, to the surprise of the bookseller, he coveted a volume on the discoveries of Volta
Alessandro Volta
Count Alessandro Giuseppe Antonio Anastasio Gerolamo Umberto Volta was a Lombard physicist known especially for the invention of the battery in 1800.-Early life and works:...
in electricity
Electricity
Electricity is a general term encompassing a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena, such as lightning, static electricity, and the flow of electrical current in an electrical wire...
, but not having the price, he saved his pennies and secured the volume. It was written in French, and so he was obliged to save again, until he could buy a dictionary. Then he began to read the volume, and, with the help of his elder brother, William, to repeat the experiments described in it, with a home-made battery, in the scullery behind his father's house. In constructing the battery, the boy philosophers ran short of money to procure the requisite copper-plates. They had only a few copper coins left. A happy thought occurred to Charles, who was the leading spirit in these researches, 'We must use the pennies themselves,' said he, and the battery was soon complete.
At Christchurch, Marylebone
Marylebone
Marylebone is an affluent inner-city area of central London, located within the City of Westminster. It is sometimes written as St. Marylebone or Mary-le-bone....
, on 12 February 1847, Wheatstone was married. His wife was the daughter of a Taunton
Taunton
Taunton is the county town of Somerset, England. The town, including its suburbs, had an estimated population of 61,400 in 2001. It is the largest town in the shire county of Somerset....
tradesman, and of handsome appearance. She died in 1866, leaving a family of five young children to his care. His domestic life was quiet and uneventful.
Though silent and reserved in public, Wheatstone was a clear and voluble talker in private, if taken on his favourite studies, and his small but active person, his plain but intelligent countenance, was full of animation. Sir Henry Taylor tells us that he once observed Wheatstone at an evening party in Oxford earnestly holding forth to Lord Palmerston on the capabilities of his telegraph. 'You don't say so!' exclaimed the statesman. 'I must get you to tell that to the Lord Chancellor.' And so saying, he fastened the electrician on Lord Westbury, and effected his escape. A reminiscence of this interview may have prompted Palmerston to remark that a time was coming when a minister might be asked in Parliament if war had broken out in India, and would reply, 'Wait a minute; I'll just telegraph to the Governor-General, and let you know.'
Wheatstone was knighted in 1868, after his completion of the automatic telegraph. He had previously been made a Chevalier of the Legion of Honour. Some thirty-four distinctions and diplomas of home or foreign societies bore witness to his scientific reputation. Since 1836 he had been a Fellow of the Royal Society, and in 1859 he was elected a foreign member of the Royal Swedish Academy of Sciences
Royal Swedish Academy of Sciences
The Royal Swedish Academy of Sciences or Kungliga Vetenskapsakademien is one of the Royal Academies of Sweden. The Academy is an independent, non-governmental scientific organization which acts to promote the sciences, primarily the natural sciences and mathematics.The Academy was founded on 2...
, and in 1873 a Foreign Associate of the French Academy of Sciences
French Academy of Sciences
The French Academy of Sciences is a learned society, founded in 1666 by Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French scientific research...
. The same year he was awarded the Ampere Medal by the French Society for the Encouragement of National Industry. In 1875 he was created an honorary member of the Institution of Civil Engineers. He was a D.C.L. of Oxford and an LL.D. of Cambridge.
While on a visit to Paris during the autumn of 1875, and engaged in perfecting his receiving instrument for submarine cables, he caught a cold, which produced inflammation of the lungs, an illness from which he died in Paris, on 19 October 1875. A memorial service was held in the Anglican Chapel, Paris, and attended by a deputation of the Academy. His remains were taken to his home in Park Crescent, London, (marked by a blue plaque today) and buried in Kensal Green Cemetery
Kensal Green Cemetery
Kensal Green Cemetery is a cemetery in Kensal Green, in the west of London, England. It was immortalised in the lines of G. K. Chesterton's poem The Rolling English Road from his book The Flying Inn: "For there is good news yet to hear and fine things to be seen; Before we go to Paradise by way of...
.
Music instruments and acoustics
In September 1821, Wheatstone brought himself into public notice by exhibiting the 'Enchanted Lyre,' or 'Aconcryptophone,' at a music-shop at Pall Mall and in the Adelaide Gallery. It consisted of a mimic lyre hung from the ceiling by a cord, and emitting the strains of several instruments — the pianoPiano
The piano is a musical instrument played by means of a keyboard. It is one of the most popular instruments in the world. Widely used in classical and jazz music for solo performances, ensemble use, chamber music and accompaniment, the piano is also very popular as an aid to composing and rehearsal...
, harp
Harp
The harp is a multi-stringed instrument which has the plane of its strings positioned perpendicularly to the soundboard. Organologically, it is in the general category of chordophones and has its own sub category . All harps have a neck, resonator and strings...
, and dulcimer
Hammered dulcimer
The hammered dulcimer is a stringed musical instrument with the strings stretched over a trapezoidal sounding board. Typically, the hammered dulcimer is set on a stand, at an angle, before the musician, who holds small mallet hammers in each hand to strike the strings...
. In reality it was a mere sounding box, and the cord was a steel rod that conveyed the vibrations of the music from the several instruments which were played out of sight and ear-shot. At this period Wheatstone made numerous experiments on sound and its transmission. Some of his results are preserved in Thomson's Annals of Philosophy for 1823. He recognised that sound is propagated by waves or oscillations of the atmosphere, as light was then believed to be by undulations of the luminiferous ether. Water, and solid bodies, such as glass, or metal, or sonorous wood, convey the modulations with high velocity, and he conceived the plan of transmitting sound-signals, music, or speech to long distances by this means. He estimated that sound would travel 200 miles per second (322 km/s) through solid rods, and proposed to telegraph from London
London
London is the capital city of :England and the :United Kingdom, the largest metropolitan area in the United Kingdom, and the largest urban zone in the European Union by most measures. Located on the River Thames, London has been a major settlement for two millennia, its history going back to its...
to Edinburgh
Edinburgh
Edinburgh is the capital city of Scotland, the second largest city in Scotland, and the eighth most populous in the United Kingdom. The City of Edinburgh Council governs one of Scotland's 32 local government council areas. The council area includes urban Edinburgh and a rural area...
in this way. He even called his arrangement a 'telephone.' (Robert Hooke
Robert Hooke
Robert Hooke FRS was an English natural philosopher, architect and polymath.His adult life comprised three distinct periods: as a scientific inquirer lacking money; achieving great wealth and standing through his reputation for hard work and scrupulous honesty following the great fire of 1666, but...
, in his Micrographia
Micrographia
Micrographia is a historic book by Robert Hooke, detailing the then thirty year-old Hooke's observations through various lenses. Published in September 1665, the first major publication of the Royal Society, it was the first scientific best-seller, inspiring a wide public interest in the new...
, published in 1667, writes: 'I can assure the reader that I have, by the help of a distended wire, propagated the sound to a very considerable distance in an instant, or with as seemingly quick a motion as that of light.' Nor was it essential the wire should be straight; it might be bent into angles. This property is the basis of the mechanical or lover's telephone, said to have been known to the Chinese many centuries ago. Hooke also considered the possibility of finding a way to quicken our powers of hearing.) A writer in the Repository of Arts for 1 September 1821, in referring to the 'Enchanted Lyre,' beholds the prospect of an opera being performed at the King's Theatre, and enjoyed at the Hanover Square Rooms
Hanover Square Rooms
The Hanover Square Rooms or the Queen's Concert Rooms were assembly rooms established, principally for musical performances, on the corner of Hanover Square, London, by Sir John Gallini in partnership with Johann Christian Bach and Carl Friedrich Abel in 1774. For exactly one century this was the...
, or even at the Horns Tavern, Kennington. The vibrations are to travel through underground conductors, like to gas in pipes.
- And if music be capable of being thus conducted,' he observes, 'perhaps the words of speech may be susceptible of the same means of propagation. The eloquence of counsel, the debates of Parliament, instead of being read the next day only, -- But we shall lose ourselves in the pursuit of this curious subject.
Besides transmitting sounds to a distance, Wheatstone devised a simple instrument for augmenting feeble sounds, to which he gave the name of 'Microphone.' It consisted of two slender rods, which conveyed the mechanical vibrations to both ears, and is quite different from the electrical microphone of Professor Hughes.
In 1823, his uncle, the musical instrument maker, died, and Wheatstone, with his elder brother, William, took over the business. Charles had no great liking for the commercial part, but his ingenuity found a vent in making improvements on the existing instruments, and in devising philosophical toys. At the end of six years he retired from the undertaking.
In 1827, Wheatstone introduced his 'kaleidophone', a device for rendering the vibrations of a sounding body apparent to the eye. It consists of a metal rod, carrying at its end a silvered bead, which reflects a 'spot' of light. As the rod vibrates the spot is seen to describe complicated figures in the air, like a spark whirled about in the darkness. His photometer
Photometer
In its widest sense, a photometer is an instrument for measuring light intensity or optical properties of solutions or surfaces. Photometers are used to measure:*Illuminance*Irradiance*Light absorption*Scattering of light*Reflection of light*Fluorescence...
was probably suggested by this appliance. It enables two lights to be compared by the relative brightness of their reflections in a silvered bead, which describes a narrow ellipse, so as to draw the spots into parallel lines.
In 1828, Wheatstone improved the German wind instrument, called the Mundharmonika, until it became the popular concertina, patented on 19 December 1829 http://www.concertina.com/patents/index.htm#wheatstone-patent-1829. The portable harmonium
Harmonium
A harmonium is a free-standing keyboard instrument similar to a reed organ. Sound is produced by air being blown through sets of free reeds, resulting in a sound similar to that of an accordion...
is another of his inventions, which gained a prize medal at the Great Exhibition of 1851. He also improved the speaking machine of De Kempelen
Wolfgang von Kempelen
Johann Wolfgang Ritter von Kempelen de Pázmánd was a Hungarian author and inventor with Irish ancestors.-Life:...
, and endorsed the opinion of Sir David Brewster
David Brewster
Sir David Brewster KH PRSE FRS FSA FSSA MICE was a Scottish physicist, mathematician, astronomer, inventor, writer and university principal.-Early life:...
, that before the end of this century a singing and talking apparatus would be among the conquests of science.
In 1834, Wheatstone, who had won a name for himself, was appointed to the Chair of Experimental Physics in King's College London
King's College London
King's College London is a public research university located in London, United Kingdom and a constituent college of the federal University of London. King's has a claim to being the third oldest university in England, having been founded by King George IV and the Duke of Wellington in 1829, and...
. But his first course of lectures on Sound were a complete failure, owing to an invincible repugnance to public speaking, and a distrust of his powers in that direction. In the rostrum he was tongue-tied and incapable, sometimes turning his back on the audience and mumbling to the diagrams on the wall. In the laboratory he felt himself at home, and ever after confined his duties mostly to demonstration.
Velocity of electricity
He achieved renown by a great experiment — the measurement of the velocity of electricity in a wire. He cut the wire at the middle, to form a gap which a spark might leap across, and connected its ends to the poles of a Leyden jarLeyden jar
A Leyden jar, or Leiden jar, is a device that "stores" static electricity between two electrodes on the inside and outside of a jar. It was invented independently by German cleric Ewald Georg von Kleist on 11 October 1745 and by Dutch scientist Pieter van Musschenbroek of Leiden in 1745–1746. The...
filled with electricity. Three sparks were thus produced, one at either end of the wire, and another at the middle. He mounted a tiny mirror on the works of a watch, so that it revolved at a high velocity, and observed the reflections of his three sparks in it. The points of the wire were so arranged that if the sparks were instantaneous, their reflections would appear in one straight line; but the middle one was seen to lag behind the others, because it was an instant later. The electricity had taken a certain time to travel from the ends of the wire to the middle. This time was found by measuring the amount of lag, and comparing it with the known velocity of the mirror. Having got the time, he had only to compare that with the length of half the wire, and he could find the velocity of electricity. His results gave a calculated velocity of 288,000 miles per second, i.e. faster than what we now know to be the speed of light, but were nonetheless an interesting approximation.
It was afterwards found that the velocity of an electric field travelling in a cable depends on the nature of the conductor, its resistance, and its electro-static capacity. Michael Faraday
Michael Faraday
Michael Faraday, FRS was an English chemist and physicist who contributed to the fields of electromagnetism and electrochemistry....
showed, for example, that its velocity in a submarine wire, coated with insulator and surrounded with water, is only 144,000 miles per second (232,000 km/s), or still less. Wheatstone's device of the revolving mirror was afterwards employed by Léon Foucault
Léon Foucault
Jean Bernard Léon Foucault was a French physicist best known for the invention of the Foucault pendulum, a device demonstrating the effect of the Earth's rotation...
and Hippolyte Fizeau
Hippolyte Fizeau
Armand Hippolyte Louis Fizeau was a French physicist.-Biography:Fizeau was born in Paris. His earliest work was concerned with improvements in photographic processes. Following suggestions by François Arago, Léon Foucault and Fizeau collaborated in a series of investigations on the interference of...
to measure the velocity of light
Speed of light
The speed of light in vacuum, usually denoted by c, is a physical constant important in many areas of physics. Its value is 299,792,458 metres per second, a figure that is exact since the length of the metre is defined from this constant and the international standard for time...
.
Spectroscopy
Wheatstone and others also contributed to early spectroscopy through the discovery and exploitation of spectral emission lines.As John Munro wrote in 1891, "In 1835, at the Dublin meeting of the British Association, Wheatstone showed that when metals were volatilised in the electric spark, their light, examined through a prism, revealed certain rays which were characteristic of them. Thus the kind of metals which formed the sparking points could be determined by analysing the light of the spark. This suggestion has been of great service in spectrum analysis, and as applied by Robert Bunsen
Robert Bunsen
Robert Wilhelm Eberhard Bunsen was a German chemist. He investigated emission spectra of heated elements, and discovered caesium and rubidium with Gustav Kirchhoff. Bunsen developed several gas-analytical methods, was a pioneer in photochemistry, and did early work in the field of organoarsenic...
, Gustav Robert Kirchhoff, and others, has led to the discovery of several new elements, such as rubidium
Rubidium
Rubidium is a chemical element with the symbol Rb and atomic number 37. Rubidium is a soft, silvery-white metallic element of the alkali metal group. Its atomic mass is 85.4678. Elemental rubidium is highly reactive, with properties similar to those of other elements in group 1, such as very rapid...
and thallium
Thallium
Thallium is a chemical element with the symbol Tl and atomic number 81. This soft gray poor metal resembles tin but discolors when exposed to air. The two chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861 by the newly developed method of flame spectroscopy...
, as well as increasing our knowledge of the heavenly bodies."
Telegraph
Wheatstone abandoned his idea of transmitting intelligence by the mechanical vibration of rods, and took up the electric telegraph. In 1835 he lectured on the system of Baron Schilling, and declared that the means were already known by which an electric telegraph could be made of great service to the world. He made experiments with a plan of his own, and not only proposed to lay an experimental line across the Thames, but to establish it on the London and Birmingham Railway. Before these plans were carried out, however, he received a visit from Mr William Fothergill CookeWilliam Fothergill Cooke
Sir William Fothergill Cooke was, with Charles Wheatstone, the co-inventor of the Cooke-Wheatstone electrical telegraph, which was patented in May 1837...
at his house in Conduit Street on 27 February 1837, which had an important influence on his future.
Cooperation with Cooke
Mr. Cooke was an officer in the Madras army, who, being home on furloughFurlough
In the United States a furlough is a temporary unpaid leave of some employees due to special needs of a company, which may be due to economic conditions at the specific employer or in the economy as a whole...
, was attending some lectures on anatomy at the University of Heidelberg, where, on 6 March 1836, he witnessed a demonstration with the telegraph of Professor
Professor
A professor is a scholarly teacher; the precise meaning of the term varies by country. Literally, professor derives from Latin as a "person who professes" being usually an expert in arts or sciences; a teacher of high rank...
Moncke, and was so impressed with its importance, that he forsook his medical studies and devoted all his efforts to the work of introducing the telegraph. He returned to London soon after, and was able to exhibit a telegraph with three needles in January, 1837. Feeling his want of scientific knowledge, he consulted Faraday and Dr. Roget, the latter of whom sent him to Wheatstone.
At a second interview, Mr. Cooke told Wheatstone of his intention to bring out a working telegraph, and explained his method. Wheatstone, according to his own statement, remarked to Cooke that the method would not act, and produced his own experimental telegraph. Finally, Cooke proposed that they should enter into a partnership, but Wheatstone was at first reluctant to comply. He was a well-known man of science, and had meant to publish his results without seeking to make capital of them. Cooke, on the other hand, declared that his sole object was to make a fortune from the scheme. In May they agreed to join their forces, Wheatstone contributing the scientific, and Cooke the administrative talent. The deed of partnership was dated 19 November 1837. A joint patent was taken out for their inventions, including the five-needle telegraph of Wheatstone, and an alarm worked by a relay, in which the current, by dipping a needle into mercury, completed a local circuit, and released the detent of a clockwork.
The five-needle telegraph, which was mainly, if not entirely, due to Wheatstone, was similar to that of Schilling, and based on the principle enunciated by André-Marie Ampère
André-Marie Ampère
André-Marie Ampère was a French physicist and mathematician who is generally regarded as one of the main discoverers of electromagnetism. The SI unit of measurement of electric current, the ampere, is named after him....
— that is to say, the current was sent into the line by completing the circuit of the battery with a make and break key, and at the other end it passed through a coil of wire surrounding a magnetic needle free to turn round its centre. According as one pole of the battery or the other was applied to the line by means of the key, the current deflected the needle to one side or the other. There were five separate circuits actuating five different needles. The latter were pivoted in rows across the middle of a dial shaped like a diamond, and having the letters of the alphabet arranged upon it in such a way that a letter was literally pointed out by the current deflecting two of the needles towards it.
Early installations
An experimental line, with a sixth return wire, was run between the EustonEuston railway station
Euston railway station, also known as London Euston, is a central London railway terminus in the London Borough of Camden. It is the sixth busiest rail terminal in London . It is one of 18 railway stations managed by Network Rail, and is the southern terminus of the West Coast Main Line...
terminus and Camden Town
Camden Town
-Economy:In recent years, entertainment-related businesses and a Holiday Inn have moved into the area. A number of retail and food chain outlets have replaced independent shops driven out by high rents and redevelopment. Restaurants have thrived, with the variety of culinary traditions found in...
station of the London and North Western Railway on 25 July 1837. The actual distance was only one and a half mile (2.4 km), but spare wire had been inserted in the circuit to increase its length. It was late in the evening before the trial took place. Mr Cooke was in charge at Camden Town, while Mr Robert Stephenson
Robert Stephenson
Robert Stephenson FRS was an English civil engineer. He was the only son of George Stephenson, the famed locomotive builder and railway engineer; many of the achievements popularly credited to his father were actually the joint efforts of father and son.-Early life :He was born on the 16th of...
and other gentlemen looked on; and Wheatstone sat at his instrument in a dingy little room, lit by a tallow candle, near the booking-office at Euston. Wheatstone sent the first message, to which Cooke replied, and 'never' said Wheatstone, 'did I feel such a tumultuous sensation before, as when, all alone in the still room, I heard the needles click, and as I spelled the words, I felt all the magnitude of the invention pronounced to be practicable beyond cavil or dispute.'
In spite of this trial, however, the directors of the railway treated the 'new-fangled' invention with indifference, and requested its removal. In July 1839, however, it was favoured by the Great Western Railway
Great Western Railway
The Great Western Railway was a British railway company that linked London with the south-west and west of England and most of Wales. It was founded in 1833, received its enabling Act of Parliament in 1835 and ran its first trains in 1838...
, and a line erected from the Paddington station
Paddington station
Paddington railway station, also known as London Paddington, is a central London railway terminus and London Underground complex.The site is a historic one, having served as the London terminus of the Great Western Railway and its successors since 1838. Much of the current mainline station dates...
terminus to West Drayton railway station
West Drayton railway station
West Drayton railway station is a railway station serving West Drayton, a western suburb of London, England. The station is served by local services operated by First Great Western from to stations.-History:...
, a distance of thirteen miles (21 km). Part of the wire was laid underground at first, but subsequently all of it was raised on posts along the line. Their circuit was eventually extended to in 1841, and was publicly exhibited at Paddington as a marvel of science, which could transmit fifty signals a distance of 280,000 miles per minute (7,500 km/s). The price of admission was a shilling (£0.05), and in 1844 one fascinated observer recorded the following:
"It is perfect from the terminus of the Great Western as far as
Slough – that is, eighteen miles; the wires being in some places
underground in tubes, and in others high up in the air, which last,
he says, is by far the best plan. We asked if the weather did not
affect the wires, but he said not; a violent thunderstorm might
ring a bell, but no more. We were taken into a small room (we
being Mrs Drummond, Miss Philips, Harry Codrington and
myself – and afterwards the Milmans and Mr Rich) where were
several wooden cases containing different sorts of telegraphs.
In one sort every word was spelt, and as each letter was placed in turn
in a particular position, the machinery caused the electric fluid to run
down the line, where it made the letter show itself at Slough, by what
machinery he could not undertake to explain. After each word came a
sign from Slough, signifying "I understand", coming certainly in less
than one second from the end of the word......Another prints the messages
it brings, so that if no-one attended to the bell,....the message would not
be lost. This is effected by the electrical fluid causing a little hammer to strike the
letter which presents itself, the letter which is raised hits some manifold
writing paper (a new invention, black paper which, if pressed, leaves an
indelible black mark), by which means the impression is left on white paper
beneath. This was the most ingenious of all, and apparently Mr. Wheatstone's
favourite; he was very good-natured in explaining but
understands it so well himself that he cannot feel how little we
know about it, and goes too fast for such ignorant folk to follow
him in everything. Mrs DrummondMaria KinnairdMaria Kinnaird was born on St. Vincent, but was orphaned by a volcanic eruption and she was adopted by the politician, Conversation Sharp. She was the heiress of her adopted father and she has been described as a accomplished, attractive, and intelligent woman...
told me he is wonderful for
the rapidity with which he thinks and his power of invention; he
invents so many things that he cannot put half his ideas into
execution, but leaves them to be picked up and used by others,
who get the credit of them."
Public attention and success
The public took to the new invention after the capture of the murderer John TawellJohn Tawell
John Tawell was a British murderer. In 1845, he became the first person to be arrested as the result of telecommunications technology....
, who In 1845, had become the first person to be arrested as the result of telecommunications technology. In the same year, Wheatstone introduced two improved forms of the apparatus, namely, the 'single' and the 'double' needle instruments, in which the signals were made by the successive deflections of the needles. Of these, the single-needle instrument, requiring only one wire, is still in use.
The development of the telegraph may be gathered from two facts. In 1855, the death of the Emperor Nicholas
Nicholas I of Russia
Nicholas I , was the Emperor of Russia from 1825 until 1855, known as one of the most reactionary of the Russian monarchs. On the eve of his death, the Russian Empire reached its historical zenith spanning over 20 million square kilometers...
at St. Petersburg, about one o'clock in the afternoon, was announced in the House of Lords a few hours later. The result of the Oaks
The Oaks
- England :* The Oaks *The Oaks, Ascot, an 18th century country mansion later re-named the Royal Berkshire- United States :* The Oaks , listed on the NRHP in Colbert County, Alabama...
of 1890 was received in New York fifteen seconds after the horses passed the winning-post.
Differences with Cooke
In 1841 a difference arose between Cooke and Wheatstone as to the share of each in the honour of inventing the telegraph. The question was submitted to the arbitration of the famous engineer, Marc Isambard BrunelMarc Isambard Brunel
Sir Marc Isambard Brunel, FRS FRSE was a French-born engineer who settled in England. He preferred the name Isambard, but is generally known to history as Marc to avoid confusion with his more famous son Isambard Kingdom Brunel...
, on behalf of Cooke, and Professor Daniell, of King's College, the inventor of the Daniell battery, on the part of Wheatstone. They awarded to Cooke the credit of having introduced the telegraph as a useful undertaking which promised to be of national importance, and to Wheatstone that of having by his researches prepared the public to receive it. They concluded with the words: 'It is to the united labours of two gentlemen so well qualified for mutual assistance that we must attribute the rapid progress which this important invention has made during five years since they have been associated.' The decision, however vague, pronounces the needle telegraph a joint production. If it had mainly been invented by Wheatstone, it was chiefly introduced by Cooke. Their respective shares in the undertaking might be compared to that of an author and his publisher, but for the fact that Cooke himself had a share in the actual work of invention.
Further work on telegraphs
From 1836-7 Wheatstone had thought a good deal about submarine telegraphs, and in 1840 he gave evidence before the Railway Committee of the House of Commons on the feasibility of the proposed line from DoverDover
Dover is a town and major ferry port in the home county of Kent, in South East England. It faces France across the narrowest part of the English Channel, and lies south-east of Canterbury; east of Kent's administrative capital Maidstone; and north-east along the coastline from Dungeness and Hastings...
to Calais
Calais
Calais is a town in Northern France in the department of Pas-de-Calais, of which it is a sub-prefecture. Although Calais is by far the largest city in Pas-de-Calais, the department's capital is its third-largest city of Arras....
. He had even designed the machinery for making and laying the cable. In the autumn of 1844, with the assistance of Mr. J. D. Llewellyn, he submerged a length of insulated wire in Swansea Bay, and signalled through it from a boat to the Mumbles Lighthouse. Next year he suggested the use of gutta-percha
Gutta-percha
Gutta-percha is a genus of tropical trees native to Southeast Asia and northern Australasia, from Taiwan south to the Malay Peninsula and east to the Solomon Islands. The same term is used to refer to an inelastic natural latex produced from the sap of these trees, particularly from the species...
for the coating of the intended wire across the English Channel
English Channel
The English Channel , often referred to simply as the Channel, is an arm of the Atlantic Ocean that separates southern England from northern France, and joins the North Sea to the Atlantic. It is about long and varies in width from at its widest to in the Strait of Dover...
.
In 1840 Wheatstone had patented an alphabetical telegraph, or, 'Wheatstone A B C instrument,' which moved with a step-by-step motion, and showed the letters of the message upon a dial. The same principle was utilised in his type-printing telegraph, patented in 1841. This was the first apparatus which printed a telegram in type. It was worked by two circuits, and as the type revolved a hammer, actuated by the current, pressed the required letter on the paper.
The introduction of the telegraph had so far advanced that, on 2 September 1845, the Electric Telegraph Company
Electric Telegraph Company
The Electric Telegraph Company was the world's first public telegraph company founded in the United Kingdom in 1846 by Sir William Fothergill Cooke and John Lewis Ricardo, MP for Stoke-on-Trent....
was registered, and Wheatstone, by his deed of partnership with Cooke, received a sum of £33,000 for the use of their joint inventions.
In 1859 Wheatstone was appointed by the Board of Trade to report on the subject of the Atlantic cables, and in 1864 he was one of the experts who advised the Atlantic Telegraph Company
Atlantic Telegraph Company
The Atlantic Telegraph Company was a company formed in 1856 to undertake and exploit a commercial telegraph cable across the Atlantic ocean, the first such telecommunications link....
on the construction of the successful lines of 1865 and 1866.
In 1870 the electric telegraph lines of the United Kingdom, worked by different companies, were transferred to the Post Office, and placed under Government control.
Wheatstone further invented the automatic transmitter, in which the signals of the message are first punched out on a strip of paper, which is then passed through the sending-key, and controls the signal currents. By substituting a mechanism for the hand in sending the message, he was able to telegraph about 100 words a minute, or five times the ordinary rate. In the Postal Telegraph service this apparatus is employed for sending Press telegrams, and it has recently been so much improved, that messages are now sent from London to Bristol at a speed of 600 words a minute, and even of 400 words a minute between London and Aberdeen. On the night of 8 April 1886, when Mr. Gladstone introduced his Bill for Home Rule in Ireland, no fewer than 1,500,000 words were dispatched from the central station at St. Martin's-le-Grand by 100 Wheatstone transmitters. The plan of sending messages by a running strip of paper which actuates the key was originally patented by Bain in 1846; but Wheatstone, aided by Mr. Augustus Stroh, an accomplished mechanician, and an able experimenter, was the first to bring the idea into successful operation.
Optics
StereopsisStereopsis
Stereopsis refers to impression of depth that is perceived when a scene is viewed with both eyes by someone with normal binocular vision. Binocular viewing of a scene creates two slightly different images of the scene in the two eyes due the the eyes' different positions on the head...
was first described by Wheatstone in 1838. In 1840 he was awarded the Royal Medal of the Royal Society for his explanation of binocular vision
Binocular vision
Binocular vision is vision in which both eyes are used together. The word binocular comes from two Latin roots, bini for double, and oculus for eye. Having two eyes confers at least four advantages over having one. First, it gives a creature a spare eye in case one is damaged. Second, it gives a...
, a research which led him to make stereoscopic drawings and construct the stereoscope. He showed that our impression of solidity is gained by the combination in the mind of two separate pictures of an object taken by both of our eyes from different points of view. Thus, in the stereoscope, an arrangement of lenses or mirrors, two photographs of the same object taken from different points are so combined as to make the object stand out with a solid aspect. Sir David Brewster
David Brewster
Sir David Brewster KH PRSE FRS FSA FSSA MICE was a Scottish physicist, mathematician, astronomer, inventor, writer and university principal.-Early life:...
improved the stereoscope by dispensing with the mirrors, and bringing it into its existing form with lenses.
The 'pseudoscope
Pseudoscope
A pseudoscope is a binocular optical instrument that reverses depth perception. It is used to study human stereoscopic perception. Objects viewed through it appear inside out, for example: a box on a floor, would appear as a box shaped hole in the floor....
' (Wheatstone coined the term from the Greek ψευδίς σκοπειν) was introduced in 1852, and is in some sort the reverse of the stereoscope, since it causes a solid object to seem hollow, and a nearer one to be farther off; thus, a bust appears to be a mask, and a tree growing outside of a window looks as if it were growing inside the room. Its purpose was to test his theory of stereo vision and for investigations into what would now be called experimental psychology.
Measuring time
In 1840, Wheatstone introduced his chronoscope, for measuring minute intervals of time, which was used in determining the speed of a bullet or the passage of a star. In this apparatus an electric current actuated an electro-magnet, which noted the instant of an occurrence by means of a pencil on a moving paper. It is said to have been capable of distinguishing 1/7300 part of a second (137 microsecond), and the time a body took to fall from a height of one inch (25 mm).On 26 November 1840, he exhibited his electro-magnetic clock in the library of the Royal Society, and propounded a plan for distributing the correct time from a standard clock to a number of local timepieces. The circuits of these were to be electrified by a key or contact-maker actuated by the arbour of the standard, and their hands corrected by electro-magnetism. The following January Alexander Bain
Alexander Bain
Alexander Bain was a Scottish philosopher and educationalist in the British school of empiricism who was a prominent and innovative figure in the fields of psychology, linguistics, logic, moral philosophy and education reform...
took out a patent for an electro-magnetic clock, and he subsequently charged Wheatstone with appropriating his ideas. It appears that Bain worked as a mechanist to Wheatstone from August to December, 1840, and he asserted that he had communicated the idea of an electric clock to Wheatstone during that period; but Wheatstone maintained that he had experimented in that direction during May. Bain further accused Wheatstone of stealing his idea of the electro-magnetic printing telegraph; but Wheatstone showed that the instrument was only a modification of his own electro-magnetic telegraph.
One of Wheatstone's most ingenious devices was the 'Polar clock,' exhibited at the meeting of the British Association in 1848. It is based on the fact discovered by Sir David Brewster
David Brewster
Sir David Brewster KH PRSE FRS FSA FSSA MICE was a Scottish physicist, mathematician, astronomer, inventor, writer and university principal.-Early life:...
, that the light of the sky is polarised in a plane at an angle of ninety degrees from the position of the sun. It follows that by discovering that plane of polarisation, and measuring its azimuth with respect to the north, the position of the sun, although beneath the horizon, could be determined, and the apparent solar time obtained. The clock consisted of a spyglass, having a nicol (double-image) prism
Nicol prism
A Nicol prism is a type of polarizer, an optical device used to produce a polarized beam of light from an unpolarized beam. See polarized light. It was the first type of polarizing prism to be invented, in 1828 by William Nicol of Edinburgh...
for an eyepiece, and a thin plate of selenite for an object-glass. When the tube was directed to the North Pole—that is, parallel to the Earth's axis—and the prism of the eyepiece turned until no colour was seen, the angle of turning, as shown by an index moving with the prism over a graduated limb, gave the hour of day. The device is of little service in a country where watches are reliable; but it formed part of the equipment of the 1875-1876 North Polar expedition
British Arctic Expedition
The British Arctic Expedition of 1875-1876, led by Sir George Strong Nares, was sent by the British Admiralty to attempt to reach the North Pole via Smith Sound. Two ships, HMS Alert and HMS Discovery , sailed from Portsmouth on 29 May 1875...
commanded by Captain Nares.
George Nares
Vice-Admiral Sir George Strong Nares KCB FRS was a British naval officer and Arctic explorer. He commanded both the Challenger Expedition and the British Arctic Expedition, and was highly thought of a leader and a scientific explorer...
Wheatstone bridge
In 1843 Wheatstone communicated an important paper to the Royal Society, entitled 'An Account of Several New Processes for Determining the Constants of a Voltaic Circuit.' It contained an exposition of the well known balance for measuring the electrical resistance of a conductor, which still goes by the name of Wheatstone's BridgeWheatstone bridge
A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. Its operation is similar to the original potentiometer. It was invented by Samuel Hunter Christie in 1833 and...
or balance, although it was first devised by Samuel Hunter Christie
Samuel Hunter Christie
Samuel Hunter Christie was a British scientist and mathematician.He studied mathematics at Trinity College, Cambridge where he was second wrangler. He was particularly interested in magnetism, studying the earth's magnetic field and designing improvements to the magnetic compass...
, of the Royal Military Academy, Woolwich, who published it in the Philosophical Transactions for 1833. The method was neglected until Wheatstone brought it into notice. His paper abounds with simple and practical formulae for the calculation of currents and resistances by the law of Ohm. He introduced a unit of resistance, namely, a foot of copper wire weighing one hundred grains (6.5 g), and showed how it might be applied to measure the length of wire by its resistance. He was awarded a medal for his paper by the Society. The same year he invented an apparatus which enabled the reading of a thermometer or a barometer to be registered at a distance by means of an electric contact made by the mercury. A sound telegraph, in which the signals were given by the strokes of a bell, was also patented by Cooke and Wheatstone in May of that year.
Cryptography
Wheatstone's remarkable ingenuity was also displayed in the invention of cyphers. He was responsible for the then unusual Playfair cipherPlayfair cipher
The Playfair cipher or Playfair square is a manual symmetric encryption technique and was the first literal digraph substitution cipher. The scheme was invented in 1854 by Charles Wheatstone, but bears the name of Lord Playfair who promoted the use of the cipher.The technique encrypts pairs of...
, named after his friend Lord Playfair
Lyon Playfair, 1st Baron Playfair
Lyon Playfair, 1st Baron Playfair GCB, PC, FRS was a Scottish scientist and Liberal politician.-Background and education:...
. It was used by the militaries of several nations through at least World War I, and is known to have been used during World War II by British intelligence services.
It was initially resistant to cryptoanalysis, but methods were eventually developed to break it. He also became involved in the interpretation of cypher manuscripts in the British Museum. He devised a cryptograph or machine for turning a message into cypher which could only be interpreted by putting the cypher into a corresponding machine adjusted to decrypt it.
Electrical generators
In 1840, Wheatstone brought out his magneto-electrical machine for generating continuous currents.On 4 February 1867, he published the principle of reaction in the dynamo-electric machine by a paper to the Royal Society; but Mr. C. W. Siemens had communicated the identical discovery ten days earlier, and both papers were read on the same day.
It afterwards appeared that Werner von Siemens, Samuel Alfred Varley, and Wheatstone had independently arrived at the principle within a few months of each other. Varley patented it on 24 December 1866; Siemens called attention to it on January 17, 1867; and Wheatstone exhibited it in action at the Royal Society on the above date.
Further reading
- This article incorporates text from Heroes of the Telegraph by John Munro (1849–1930) in 1891, now in the public domainPublic domainWorks are in the public domain if the intellectual property rights have expired, if the intellectual property rights are forfeited, or if they are not covered by intellectual property rights at all...
and available at this site.