Arbuscular mycorrhiza
Encyclopedia
An arbuscular mycorrhiza (plural mycorrhizae or mycorrhizas, aka AM Fungi) is a type of mycorrhiza
Mycorrhiza
A mycorrhiza is a symbiotic association between a fungus and the roots of a vascular plant....

 in which the fungus
Fungus
A fungus is a member of a large group of eukaryotic organisms that includes microorganisms such as yeasts and molds , as well as the more familiar mushrooms. These organisms are classified as a kingdom, Fungi, which is separate from plants, animals, and bacteria...

 penetrates the cortical
Cortex (botany)
In botany, the cortex is the outer layer of the stem or root of a plant, bounded on the outside by the epidermis and on the inside by the endodermis. It is composed mostly of undifferentiated cells, usually large thin-walled parenchyma cells of the ground tissue system. The outer cortical cells...

 cells of the roots of a vascular plant
Vascular plant
Vascular plants are those plants that have lignified tissues for conducting water, minerals, and photosynthetic products through the plant. Vascular plants include the clubmosses, Equisetum, ferns, gymnosperms and angiosperms...

.

Arbuscular mycorrhizae (AMs) are characterized by the formation of unique structures such as arbuscules and vesicle
Vesicle (biology)
A vesicle is a bubble of liquid within another liquid, a supramolecular assembly made up of many different molecules. More technically, a vesicle is a small membrane-enclosed sack that can store or transport substances. Vesicles can form naturally because of the properties of lipid membranes , or...

s by fungi of the phylum Glomeromycota
Glomeromycota
Glomeromycota is one of seven currently recognized phyla within the kingdom Fungi, with approximately 230 described species. Members of the Glomeromycota form arbuscular mycorrhizas with the roots or thalli of land plants. Geosiphon pyriformis forms an endocytobiotic association with Nostoc...

 (AM fungi). AM fungi (AMF) help plants to capture nutrient
Nutrient
A nutrient is a chemical that an organism needs to live and grow or a substance used in an organism's metabolism which must be taken in from its environment. They are used to build and repair tissues, regulate body processes and are converted to and used as energy...

s such as phosphorus
Phosphorus
Phosphorus is the chemical element that has the symbol P and atomic number 15. A multivalent nonmetal of the nitrogen group, phosphorus as a mineral is almost always present in its maximally oxidized state, as inorganic phosphate rocks...

, sulfur
Sulfur
Sulfur or sulphur is the chemical element with atomic number 16. In the periodic table it is represented by the symbol S. It is an abundant, multivalent non-metal. Under normal conditions, sulfur atoms form cyclic octatomic molecules with chemical formula S8. Elemental sulfur is a bright yellow...

, nitrogen
Nitrogen
Nitrogen is a chemical element that has the symbol N, atomic number of 7 and atomic mass 14.00674 u. Elemental nitrogen is a colorless, odorless, tasteless, and mostly inert diatomic gas at standard conditions, constituting 78.08% by volume of Earth's atmosphere...

 and micronutrients from the soil. It is believed that the development of the arbuscular mycorrhizal symbiosis played a crucial role in the initial colonisation of land by plants and in the evolution of the vascular plants.

It has been said that it is quicker to list the plants that do not form mycorrhizae than those that do. This symbiosis
Symbiosis
Symbiosis is close and often long-term interaction between different biological species. In 1877 Bennett used the word symbiosis to describe the mutualistic relationship in lichens...

 is a highly evolved mutualistic relationship found between fungi and plants, the most prevalent plant symbiosis known, and AM is found in 80% of vascular plant
Vascular plant
Vascular plants are those plants that have lignified tissues for conducting water, minerals, and photosynthetic products through the plant. Vascular plants include the clubmosses, Equisetum, ferns, gymnosperms and angiosperms...

 families of today.

The tremendous advances in research on mycorrhizal physiology
Physiology
Physiology is the science of the function of living systems. This includes how organisms, organ systems, organs, cells, and bio-molecules carry out the chemical or physical functions that exist in a living system. The highest honor awarded in physiology is the Nobel Prize in Physiology or...

 and ecology
Ecology
Ecology is the scientific study of the relations that living organisms have with respect to each other and their natural environment. Variables of interest to ecologists include the composition, distribution, amount , number, and changing states of organisms within and among ecosystems...

 over the past 40 years have led to a greater understanding of the multiple roles of AMF in the ecosystem. This knowledge is applicable to human endeavors of ecosystem
Ecosystem
An ecosystem is a biological environment consisting of all the organisms living in a particular area, as well as all the nonliving , physical components of the environment with which the organisms interact, such as air, soil, water and sunlight....

 management, ecosystem restoration
Ecosystem restoration
Ecosystem restoration is the return of a damaged ecological system to a stable, healthy, and sustainable state, often together with associated ecosystem services-Rationale:There are many reasons to restore ecosystems. Some include:...

, and agriculture
Agriculture
Agriculture is the cultivation of animals, plants, fungi and other life forms for food, fiber, and other products used to sustain life. Agriculture was the key implement in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that nurtured the...

.

Paleobiology

Both paleobiological and molecular evidence indicate that AM is an ancient symbiosis that originated at least 460 million years ago. AM symbiosis is ubiquitous among land plants, which suggests that mycorrhizae were present in the early ancestors of extant land plants. This positive association with plants may have facilitated the development of land plants.

The Rhynie chert
Rhynie chert
The Rhynie chert is an Early Devonian sedimentary deposit exhibiting extraordinary fossil detail or completeness . It is exposed near the village of Rhynie, Aberdeenshire, Scotland; a second unit, the Windyfield chert, is located some 700 m away...

 of the lower Devonian
Devonian
The Devonian is a geologic period and system of the Paleozoic Era spanning from the end of the Silurian Period, about 416.0 ± 2.8 Mya , to the beginning of the Carboniferous Period, about 359.2 ± 2.5 Mya...

 has yielded fossils of the earliest land plants in which AM fungi have been observed. The fossilized plants containing mycorrhizal fungi were preserved in silica.

The Early Devonian saw the development of terrestrial flora. Plants of the Rhynie chert from the Lower Devonian (400 m.yrs ago) were found to contain structures resembling vesicles and spores of present Glomus species. Colonized fossil roots have been observed in Aglaophyton major and Rhynia, which are ancient plants possessing characteristics of vascular plants and bryophyte
Bryophyte
Bryophyte is a traditional name used to refer to all embryophytes that do not have true vascular tissue and are therefore called 'non-vascular plants'. Some bryophytes do have specialized tissues for the transport of water; however since these do not contain lignin, they are not considered to be...

s with primitive protostelic rhizome
Rhizome
In botany and dendrology, a rhizome is a characteristically horizontal stem of a plant that is usually found underground, often sending out roots and shoots from its nodes...

s.

Intraradical mycelium
Mycelium
thumb|right|Fungal myceliaMycelium is the vegetative part of a fungus, consisting of a mass of branching, thread-like hyphae. The mass of hyphae is sometimes called shiro, especially within the fairy ring fungi. Fungal colonies composed of mycelia are found in soil and on or within many other...

 was observed in root intracellular spaces, and arbuscules were observed in the layer thin wall cells similar to palisade parenchyma
Parenchyma
Parenchyma is a term used to describe a bulk of a substance. It is used in different ways in animals and in plants.The term is New Latin, f. Greek παρέγχυμα - parenkhuma, "visceral flesh", f. παρεγχεῖν - parenkhein, "to pour in" f. para-, "beside" + en-, "in" + khein, "to pour"...

. The fossil arbuscules appear very similar to those of existing AMF. The cells containing arbuscules have thickened walls, which are also observed in extant colonized cells.

Mycorrhizae from the Miocene
Miocene
The Miocene is a geological epoch of the Neogene Period and extends from about . The Miocene was named by Sir Charles Lyell. Its name comes from the Greek words and and means "less recent" because it has 18% fewer modern sea invertebrates than the Pliocene. The Miocene follows the Oligocene...

 exhibit a vesicular morphology closely resembling that of present Glomerales
Glomerales
Glomerales is an order of symbiotic fungi within the phylum Glomeromycota.- Biology :These Fungi are all biotrophic mutualists. Most employ the arbuscular mycorrhizal method of nutrient exchange with plants...

. The need for further evolution may have been lost due to the readily available food source provided by the plant host. However, it can be argued that the efficacy of signaling process is likely to have evolved, which could not be easily detected in the fossil record. A finetuning of the signaling processes would improve coordination and nutrient exchange between symbionts while increasing the fitness of both the fungi and the plant symbionts.

The nature of the relationship between plants and the ancestors of arbuscular mycorrhizal fungi is contentious. Two hypotheses are:
  • Mycorrhizal symbiosis evolved from a parasitic interaction that developed in to a mutually beneficial relationship.
  • Mycorrhizal fungi developed from saprobic fungi that became endosymbiotic.

Both saprotrophs and biotrophs were found in the Rhynie Chert, but there is little evidence to support either hypothesis.

There is some fossil evidence that suggests that the parasitic fungi did not kill the host cells immediately upon invasion, although a response to the invasion was observed in the host cells. This response may have evolved into the chemical signaling processes required for symbiosis.

In both cases, the symbiotic plant-fungi interaction is thought to have evolved from a relationship in which the fungi was taking nutrients from the plant into a symbiotic relationship where the plant and fungi exchange nutrients.

Molecular evidence

Increased interest in mycorrhizal symbiosis and the rapid development of sophisticated molecular techniques has led to the rapid development of genetic evidence. Wang et al. (2010) performed an intensive investigation of three widely occurring plant genes that encode for a signal transduction cascade vital for communication with order Glomales fungal partners (DMI1, DMI3, IPD3). Sequences of these three genes were obtained from all major clades of modern land plants (including liverwort
Liverwort
Liverwort may refer to either*Marchantiophyta, a division of non-vascular plants*Hepatica, a genus of spring flowersliverworts are part of the bryophytes group and the bryophytes of the PlantaeIn the bryophytres group their are mosses too....

s, the most basal group), and the maximum probability phylogeny of the three genes was in complete agreement with the current land plant phylogenies. These findings imply that the mycorrhizal genes must have been present in the common ancestor of land plants, and that these genes must have been vertically inherited since the colonization of land by plants.

Presymbiosis

The development of AM fungi prior to root colonization, known as presymbiosis, consists of three stages: spore germination, hyphal growth, host recognition and appressorium formation.

Spores of the AM fungi are thick-walled multi-nucleate resting structures. The germination of the spore does not depend on the plant, as spores have been germinated under experimental conditions in the absence of plants both in vitro
In vitro
In vitro refers to studies in experimental biology that are conducted using components of an organism that have been isolated from their usual biological context in order to permit a more detailed or more convenient analysis than can be done with whole organisms. Colloquially, these experiments...

and in soil. However, the rate of germination can be increased by host root exudate
Exudate
An exudate is any fluid that filters from the circulatory system into lesions or areas of inflammation. It can apply to plants as well as animals. Its composition varies but generally includes water and the dissolved solutes of the main circulatory fluid such as sap or blood...

s. AM fungal spores germinate given suitable conditions of the soil matrix, temperature, carbon dioxide concentration, pH, and phosphorus concentration.

The growth of AM hypha
Hypha
A hypha is a long, branching filamentous structure of a fungus, and also of unrelated Actinobacteria. In most fungi, hyphae are the main mode of vegetative growth, and are collectively called a mycelium; yeasts are unicellular fungi that do not grow as hyphae.-Structure:A hypha consists of one or...

e through the soil is controlled by host root exudates and the soil phosphorus concentration.

Low-phosphorus concentrations in the soil increase hyphal growth and branching as well as induce plant exudation of compounds that control hyphal branching intensity.

The branching of AM fungal hyphae grown in phosphorus media of 1 mM is significantly reduced, but the length of the germ tube and total hyphal growth were not affected. A concentration of 10 mM phosphorus inhibited both hyphal growth and branching. This phosphorus concentration occurs in natural soil conditions and could thus contribute to reduced mycorrhizal colonization.
Root exudates from AMF host plants grown in a liquid medium with and without phosphorus have been shown to affect hyphal growth. Pre-germinated surface-sterilized spores of Gigaspora magarita were grown in host plant exudates. The fungi grow in the exudates from roots starved of phosphorus had increased hyphal growth and produced tertiary branches compared to those grown in exudates from plants given adequate phosphorus. When the growth-promoting root exudates were added in low concentration, the AM fungi produced scattered long branches. As the concentration of exudates was increased, the fungi produced more tightly clustered branches. At the highest-concentration arbuscules, the AMF structures of phosphorus exchange were formed.

This chemotaxic fungal response to the host plants exudates is thought to increase the efficacy of host root colonization in low-phosphorus soils. It is an adaptation for fungi to efficiently explore the soil in search of a suitable plant host.

Further evidence that AM fungi exhibit host-specific chemotaxis
Chemotaxis
Chemotaxis is the phenomenon in which somatic cells, bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food by swimming towards the highest concentration of food molecules,...

: Spores of Glomus mosseae were separated from the roots of a host plant, nonhost plants, and dead host plant by a membrane permeable only to hyphae. In the treatment with the host plant, the fungi crossed the membrane and always emerged within 800 µm of the root. Whereas in the treatments with nonhost plants and dead plants, the hyphae did not cross the membrane to reach the roots. This demonstrates that arbuscular mycorrhizal fungi have chemotaxic abilities that enable hyphal growth toward the roots of a potential host plant.

Molecular techniques have been used to further understand the signaling pathways that occur between arbuscular mycorrhizae and the plant roots. In the presence of exudates from potential host plant roots, the AM undergoes physiological changes that allow it to colonize its host. AM fungal genes required for the respiration of spore carbon compounds are triggered and turned on by host plant root exudates. In experiments, there was an increase in the transcription rate of 10 genes half-hour after exposure and an even greater rate after 1 hour. A morphological growth response was observed 4 hours after exposure. The genes were isolated and found to be involved in mitochondrial activity and enzyme production. The fungal respiration rate was measured by O2 consumption rate and increased by 30% 3 hours after exposure to root exudates. This indicates that AMF spore mitochondrial activity is positively stimulated by host plant root exudates. This may be part of a fungal regulatory mechanism that conserves spore energy for efficient growth and the hyphal branching upon receiving signals from a potential host plant.

When arbuscular mycorrhizal fungal hyphae encounter the root of a host plant, an appressorium (an infection structure) is formed on the root epidermis. The appressorium is the structure from which the hyphae can penetrate into the host’s parenchyma
Parenchyma
Parenchyma is a term used to describe a bulk of a substance. It is used in different ways in animals and in plants.The term is New Latin, f. Greek παρέγχυμα - parenkhuma, "visceral flesh", f. παρεγχεῖν - parenkhein, "to pour in" f. para-, "beside" + en-, "in" + khein, "to pour"...

 cortex. The formation of appressoria does not require chemical signals from the plant. AM fungi could form appressoria on the cell walls of “ghost” cells in which the protoplast
Protoplast
Protoplast, from the ancient Greek πρῶτον + verb πλάθω or πλάττω , initially referred to the first organized body of a species.Protoplast has several biological definitions:...

 had been removed to eliminate signaling between the fungi and the plant host. However, the hyphae did not further penetrate the cells and grow in toward the root cortex, which indicates that signaling between symbionts is required for further growth once appressoria are formed.

Symbiosis

Once inside the parenchyma, the fungi forms highly branched structures for nutrient exchange with the plant called "arbuscules". These are the distinguishing structures of arbuscular mycorrhizal fungus. Arbuscules are the sites of exchange for phosphorus, carbon, water, and other nutrients. There are two forms: Paris type
Paris type
This is a pattern of mycorrhizal infection which is coil-like in morphology.*These have direct intracellular growth to new cells.*The mycoheterotrophic plants utilize this to their advantage, as well as in many tree species, such as acer.-References:...

 is characterized by the growth of hyphae from one cell to the next; and Arum type
Arum type
Arum-type refers to the morphology of fungal hyphae living in, or around plant root cells.*Forms in arbuscular or tree-like fashion, branching off dichotomously at predetermined junctions....

 is characterized by the growth of hyphae in the space between plant cells. The choice between Paris type and Arum type is primarily determined by the host plant family, although some families or species are capable of either type.

The host plant exerts a control over the intercellular hyphal proliferation and arbuscule formation. There is a decondensation of the plant's chromatin
Chromatin
Chromatin is the combination of DNA and proteins that make up the contents of the nucleus of a cell. The primary functions of chromatin are; to package DNA into a smaller volume to fit in the cell, to strengthen the DNA to allow mitosis and meiosis and prevent DNA damage, and to control gene...

, which indicates increased transcription of the plant's DNA
DNA
Deoxyribonucleic acid is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms . The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in...

 in arbuscule-containing cells. Major modifications are required in the plant host cell to accommodate the arbuscules. The vacuole
Vacuole
A vacuole is a membrane-bound organelle which is present in all plant and fungal cells and some protist, animal and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water containing inorganic and organic molecules including enzymes in solution, though in certain...

s shrink and other cellular organelle
Organelle
In cell biology, an organelle is a specialized subunit within a cell that has a specific function, and is usually separately enclosed within its own lipid bilayer....

s proliferate. The plant cell cytoskeleton
Cytoskeleton
The cytoskeleton is a cellular "scaffolding" or "skeleton" contained within a cell's cytoplasm and is made out of protein. The cytoskeleton is present in all cells; it was once thought to be unique to eukaryotes, but recent research has identified the prokaryotic cytoskeleton...

 is reorganized around the arbuscules.

There are two other types of hyphae that originate from the colonized host plant root. Once colonization has occurred, short-lived runner hyphae grow from the plant root into the soil. These are the hyphae that take up phosphorus and micronutrients, which are conferred to the plant. AM fungal hyphae have a high surface-to-volume ratio, making their absorptive ability greater than that of plant roots. AMF hyphae are also finer than roots and can enter into pores of the soil that are inaccessible to roots. The third type of AMF hyphae grows from the roots and colonizes other host plant roots. The three types of hyphae are morphologically distinct.

Nutrient uptake and exchange

AMF are obligate symbionts. They have limited saprobic ability and are dependent on the plant for their carbon nutrition. AM fungi take up the products of the plant host’s photosynthesis as hexose
Hexose
In organic chemistry, a hexose is a monosaccharide with six carbon atoms, having the chemical formula C6H12O6. Hexoses are classified by functional group, with aldohexoses having an aldehyde at position 1, and ketohexoses having a ketone at position 2....

s.

The transfer of carbon from the plant to the fungi may occur through the arbuscules or intraradical hyphae. Secondary synthesis from the hexoses by AM occurs in the intraradical mycelium
Mycelium
thumb|right|Fungal myceliaMycelium is the vegetative part of a fungus, consisting of a mass of branching, thread-like hyphae. The mass of hyphae is sometimes called shiro, especially within the fairy ring fungi. Fungal colonies composed of mycelia are found in soil and on or within many other...

. Inside the mycelium, hexose is converted to trehalose
Trehalose
Trehalose, also known as mycose or tremalose, is a natural alpha-linked disaccharide formed by an α,α-1,1-glucoside bond between two α-glucose units. In 1832, H.A.L. Wiggers discovered trehalose in an ergot of rye, and in 1859 Marcellin Berthelot isolated it from trehala manna, a substance made...

 and glycogen
Glycogen
Glycogen is a molecule that serves as the secondary long-term energy storage in animal and fungal cells, with the primary energy stores being held in adipose tissue...

. Trehalose and glycogen are carbon storage forms that can be rapidly synthesized and degraded and may buffer the intracellular sugar concentrations. The intraradical hexose enters the oxidative pentose phosphate pathway
Pentose phosphate pathway
The pentose phosphate pathway is a process that generates NADPH and pentoses . There are two distinct phases in the pathway. The first is the oxidative phase, in which NADPH is generated, and the second is the non-oxidative synthesis of 5-carbon sugars...

, which produces pentose
Pentose
A pentose is a monosaccharide with five carbon atoms. Pentoses are organized into two groups. Aldopentoses have an aldehyde functional group at position 1...

 for nucleic acids.

Lipid
Lipid
Lipids constitute a broad group of naturally occurring molecules that include fats, waxes, sterols, fat-soluble vitamins , monoglycerides, diglycerides, triglycerides, phospholipids, and others...

 biosynthesis also occurs in the intraradical mycelium. Lipids are then stored or exported to extraradical hyphae where they may be stored or metabolized. The breakdown of lipids into hexoses, known as gluconeogenesis
Gluconeogenesis
Gluconeogenesis is a metabolic pathway that results in the generation of glucose from non-carbohydrate carbon substrates such as lactate, glycerol, and glucogenic amino acids....

, occurs in the extraradical mycelium. Approximately 25% of the carbon translocated from the plant to the fungi is stored in the extraradical hyphae. Up to 20% of the host plant's photosynthate carbon may be transferred to the AM fungi. This represents a considerable carbon investment in mycorrhizal network
Mycorrhizal network
Ectomycorrhizal hyphae extend out from one plant's roots they often encounter the root systems of other plants. If those plants also associate with ectomycorrhizal fungi, the hyphae will often grow around the root and create a new mycorrhizal structure. In this way, two plants can be linked into...

 by the host plant and contribution to the below-ground organic carbon pool.

An increase in the carbon supplied by the plant to the AM fungi increases the uptake of phosphorus and the transfer of phosphorus from fungi to plant Phosphorus uptake and transfer is also lowered when the photosynthate
Photosynthesis
Photosynthesis is a chemical process that converts carbon dioxide into organic compounds, especially sugars, using the energy from sunlight. Photosynthesis occurs in plants, algae, and many species of bacteria, but not in archaea. Photosynthetic organisms are called photoautotrophs, since they can...

 supplied to the fungi is decreased. Species of AMF differ in their abilities to supply the plant with phosphorus. In some cases, arbuscular mycorrhizae are poor symbionts, providing little phosphorus while taking relatively high amounts of carbon.

The benefit of mycorrhizae to plants is mainly attributed to increased uptake of nutrients, especially phosphorus. This increase in uptake may be due to increase surface area of soil contact, increased movement of nutrients into mycorrhizae, a modification of the root environment, and increased storage. Mycorrhizas can be much more efficient than plant roots at taking up phosphorus. Phosphorus travels to the root or via diffusion and hyphae reduce the distance required for diffusion, thus increasing uptake. The rate of inflow of phosphorus into mycorrhizae can be up to six times that of the root hairs. In some cases, the role of phosphorus uptake can be completely taken over by the mycorrhizal network, and all of the plant’s phosphorus may be of hyphal origin. Less is known about the role of nitrogen nutrition in the arbuscular mycorrhizal system
Nitrogen nutrition in the arbuscular mycorrhizal system
-Role of nitrogen:Nitrogen is a vital macronutrient for plants, necessary for the biosynthesis of many basic cellular components, such as DNA, RNA and proteins. Nitrogen is obtained by plants through roots from inorganic or organic sources, such as amino acids...

 and its impact on the symbiosis and community. While significant advances have been made in elucidating the mechanisms of this complex interaction, much investigation remains to be done.

The available phosphorus concentration in the root zone can be increased by mycorrhizal activity. Mycorrhizae lower the rhizosphere pH
PH
In chemistry, pH is a measure of the acidity or basicity of an aqueous solution. Pure water is said to be neutral, with a pH close to 7.0 at . Solutions with a pH less than 7 are said to be acidic and solutions with a pH greater than 7 are basic or alkaline...

 due to selective uptake of NH4+ (ammonium
Ammonium
The ammonium cation is a positively charged polyatomic cation with the chemical formula NH. It is formed by the protonation of ammonia...

-ions) and release of H+ ions. Decreased soil pH increases the solubility of phosphorus precipitates. The hyphal uptake of NH4+ also increases the flow of nitrogen
Nitrogen
Nitrogen is a chemical element that has the symbol N, atomic number of 7 and atomic mass 14.00674 u. Elemental nitrogen is a colorless, odorless, tasteless, and mostly inert diatomic gas at standard conditions, constituting 78.08% by volume of Earth's atmosphere...

 to the plant as NH4+ is adsorbed to the soil's inner surfaces and must be taken up by diffusion.

Habitat

Arbuscular mycorrhizal fungi are most frequent in plants growing on mineral soils, and are of extreme importance for plants growing in nutrient-deficient substrates such as in volcanic and sand dune environments. The populations of AM fungi is greatest in plant communities with high diversity such as tropical rainforest
Tropical rainforest
A tropical rainforest is an ecosystem type that occurs roughly within the latitudes 28 degrees north or south of the equator . This ecosystem experiences high average temperatures and a significant amount of rainfall...

s and temperate grasslands where they have many potential host plants and can take advantage of their ability to colonize a broad host range. There is a lower incidence of mycorrhizal colonization in very arid or nutrient-rich soils. Mycorrhizas have been observed in aquatic habitats; however, waterlogged soils have been shown to decrease colonization in some species.

Host range and specificity

The specificity, host range, and degree of colonization of mycorrhizal fungi are difficult to analyze in the field due to the complexity of interactions between the fungi within a root and within the system. There is no clear evidence to suggest that arbuscular mycorrhizal fungi exhibit specificity for colonization of potential AM host plant species as do fungal pathogen
Pathogen
A pathogen gignomai "I give birth to") or infectious agent — colloquially, a germ — is a microbe or microorganism such as a virus, bacterium, prion, or fungus that causes disease in its animal or plant host...

s for their host plants. This may be due to the opposite selective pressure involved.

In parasitic relations, the host plant benefits from mutations that prevent colonization, whereas, in a symbiotic relationship, the plant benefits from mutation that allow for colonization by AMF. However, plant species differ in the extent and dependence on colonization by certain AM fungi, and some plants may be facultative mycotroph
Mycotroph
A mycotroph is a plant that gets all or part of its carbon, water, or nutrient supply through symbiotic association with fungi. The term can refer to plants that engage in either of two distinct symbioses with fungi:...

s, while others may be obligate mycotrophs.

The ability of the same AM fungi to colonize many species of plants has ecological implications. Plants of different species can be linked underground to a common mycelial network. One plant may provide the photosynthate carbon for the establishment of the mycelial network that another plant of a different species can utilize for mineral uptake. This implies that arbuscular mycorrhizae are able to balance below-ground intra–and interspecific plant interactions.

Rhizosphere ecology

The rhizosphere
Rhizosphere
The rhizosphere is the narrow region of soil that is directly influenced by root secretions and associated soil microorganisms. Soil which is not part of the rhizosphere is known as bulk soil. The rhizosphere contains many bacteria that feed on sloughed-off plant cells, termed rhizodeposition, and...

 is the soil zone in the immediate vicinity of a root system.

Arbuscular mycorrhizal symbiosis affects the community and diversity of other organisms in the soil. This can be directly seen by the release of exudates, or indirectly by a change in the plant species and plant exudates type and amount.

Mycorrhizae diversity has been shown to increase plant species diversity as the potential number of associations increases. Dominant arbuscular mycorrhizal fungi can prevent the invasion of non-mycorrhizal plants on land where they have established symbiosis and promote their mycorrhizal host.

Recent research has shown that AM fungi release an unidentified diffusional factor, known as the myc factor, which activates the nodulation factor
Nod factor
Nodulation factors are signaling molecules produced by bacteria known as rhizobia during the initiation of nodules on the root of legumes. A symbiosis is formed when legumes take up the bacteria...

's inducible gene MtEnod11. This is the same gene involved in establishing symbiosis with the nitrogen fixing
Diazotroph
Diazotrophs are bacteria and archaea that fix atmospheric nitrogen gas into a more usable form such as ammonia.A diazotroph is an organism that is able to grow without external sources of fixed nitrogen. Examples of organisms that do this are rhizobia and Frankia and Azospirillum. All diazotrophs...

, rhizobial bacteria
Rhizobia
Rhizobia are soil bacteria that fix nitrogen after becoming established inside root nodules of legumes . Rhizobia require a plant host; they cannot independently fix nitrogen...

 (Kosuta et al. 2003). When rhizobium bacteria are present in the soil, mycorrhizal colonization is increased due to an increase in the concentration of chemical signals involved in the establishment of symbiosis (Xie et al. 2003). Molecules similar to Nod factors were isolated from AM fungi and were shown to induce MtEnod11, lateral root formation and enhance mycorrhization. Effective mycorrhizal colonization can also increase the nodulations
Root nodule
Root nodules occur on the roots of plants that associate with symbiotic nitrogen-fixing bacteria. Under nitrogen-limiting conditions, capable plants form a symbiotic relationship with a host-specific strain of bacteria known as rhizobia...

 and symbiotic nitrogen fixation in mycorrhizal legumes.

The extent of arbuscular mycorrhizal colonization and species affects the bacterial population in the rhizosphere. Bacterial species differ in their abilities to compete for carbon compound root exudates. A change in the amount or composition of root exudates and fungal exudates due to the existing AM mycorrhizal colonization determines the diversity and abundance of the bacterial community in the rhizosphere.

The influence of AM fungi on plant root and shoot growth may also have indirect effect on the rhizosphere bacteria. AMF contributes a substantial amount of carbon to the rhizosphere through the growth and degeneration of the hyphal network. There is also evidence to suggest that AM fungi may play an important role on mediating the plant species' specific effect on the bacterial composition of the rhizosphere.

Phytoremediation

The use of arbuscular mycorrhizal fungi in ecological restoration projects (phytoremediation) has been shown to enable host plant establishment on degraded soil and improve soil quality and health.

Disturbance of native plant communities in desertification-threatened areas is often followed by degradation of physical and biological soil properties, soil structure, nutrient availability, and organic matter.

When restoring disturbed land, it is essential to replace not only the above ground vegetation but also the biological and physical soil properties.

A relatively new approach to restoring land and protecting against desertification
Desertification
Desertification is the degradation of land in drylands. Caused by a variety of factors, such as climate change and human activities, desertification is one of the most significant global environmental problems.-Definitions:...

 is to inoculate the soil with arbuscular mycorrhizal fungi with the reintroduction of vegetation. A long-term study demonstrated that a significantly greater long-term improvement in soils' quality parameters was attained when the soil was inoculated with a mixture of indigenous arbuscular mycorrhizal fungi species compared to the noninoculated soil and soil inoculated with a single exotic species of AM fungi (Figure 2). The benefits observed were an increased plant growth and soil nitrogen content, higher soil organic matter content, and soil aggregation. The improvements were attributed to the higher legume nodulation in the presence of AMF, better water infiltration, and soil aeration due to soil aggregation.

Inoculation with native AM fungi increased plant uptake of phosphorus, improving plant growth and health. The results support the use of AM fungi as a biological tool in the restoration of biotopes to self-sustaining ecosystems.

Agriculture

Many modern agronomic practices are disruptive to mycorrhizal symbiosis. There is great potential for low-input agriculture to manage the system in a way that promotes mycorrhizal symbiosis.

Conventional agriculture practices, such as tillage
Tillage
Tillage is the agricultural preparation of the soil by mechanical agitation of various types, such as digging, stirring, and overturning. Examples of human-powered tilling methods using hand tools include shovelling, picking, mattock work, hoeing, and raking...

, heavy fertilizers and fungicide
Fungicide
Fungicides are chemical compounds or biological organisms used to kill or inhibit fungi or fungal spores. Fungi can cause serious damage in agriculture, resulting in critical losses of yield, quality and profit. Fungicides are used both in agriculture and to fight fungal infections in animals...

s, poor crop rotations, and selection for plants that survive these conditions, hinder the ability of plants to form symbiosis with arbuscular mycorrhizal fungi.

Most agricultural crops can perform better and are more productive when well-colonized by AM fungi. AM symbiosis increases the phosphorus and micronutrient uptake and growth of their plant host (George et al. 1992).

Management of AM fungi is especially important for organic and low-input agriculture systems where soil phosphorus is, in general, low, although all agroecosystem
Agroecosystem
An agroecosystem is the basic unit of study for an agroecologist, and is somewhat arbitrarily defined as a spatially and functionally coherent unit of agricultural activity, and includes the living and nonliving components involved in that unit as well as their interactions.An agroecosystem can be...

s can benefit by promoting arbuscular mycorrhizae establishment.

Some crops that are poor at seeking out nutrients in the soil are very dependent on AM fungi for phosphorus uptake. For example flax
Flax
Flax is a member of the genus Linum in the family Linaceae. It is native to the region extending from the eastern Mediterranean to India and was probably first domesticated in the Fertile Crescent...

, which has poor chemotaxic ability, is highly dependent on AM-mediated phosphorus uptake at low and intermediate soil phosphorus concentrations (Thingstrup et al. 1998).

Proper management of AMF in the agroecosystems can improve the quality of the soil and the productivity of the land. Agricultural practices such as reduced tillage, low phosphorus fertilizer usage, and perennialized cropping systems promote functional mycorrhizal symbiosis.

Tillage

Tillage
Tillage
Tillage is the agricultural preparation of the soil by mechanical agitation of various types, such as digging, stirring, and overturning. Examples of human-powered tilling methods using hand tools include shovelling, picking, mattock work, hoeing, and raking...

 reduces the inoculation potential of the soil and the efficacy of mycorrhizaes by disrupting the extraradical hyphal network (Miller et al. 1995, McGonigle & Miller 1999, Mozafar et al. 2000).

By breaking apart the soil macro structure, the hyphal network is rendered non-infective (Miller et al. 1995, McGonigle & Miller 1999). The disruption of the hyphal network decreases the absorptive abilities of the mycorrhizae because the surface area spanned by the hyphae is greatly reduced. This, in turn, lowers the phosphorus input to the plants that are connected to the hyphal network (Figure 3, McGonigle & Miller 1999).

In reduced-tillage system, heavy phosphorus fertilizer input may not be required as compared to heavy-tillage systems. This is due to the increase in mycorrhizal network, which allows mycorrhizae to provide the plant with sufficient phosphorus (Miller et al. 1995).

Phosphorus fertilizer

The benefits of AMF are greatest in systems where inputs are low. Heavy usage of phosphorus fertilizer can inhibit mycorrhizal colonization and growth.

As the soil's phosphorus levels available to the plants increases, the amount of phosphorus also increases in the plant's tissues, and carbon drain on the plant by the AM fungi symbiosis become non-beneficial to the plant (Grant 2005).

A decrease in mycorrhizal colonization due to high soil-phosphorus levels can lead to plant deficiencies in other micronutrients that have mycorrhizal-mediated uptake such as copper (Timmer & Leyden 1980).

Perennialized cropping systems

Cover crops are grown in the fall, winter, and spring, covering the soil during periods when it would commonly be left without a cover of growing plants.

Mycorrhizal cover crops can be used to improve the mycorrhizal inoculum potential and hyphal network (Kabir and Koide 2000, Boswell et al.1998, Sorensen et al. 2005).

Since AM fungi are biotrophic, they are dependent on plants for the growth of their hyphal networks. Growing a cover crop extends the time for AM growth into the autumn, winter, and spring. Promotion of hyphal growth creates a more extensive hyphal network. The mycorrhizal colonization increase found in cover crops systems may be largely attributed to an increase in the extraradical hyphal network that can colonize the roots of the new crop (Boswell et al. 1998). The extraradical mycelia are able to survive the winter, providing rapid spring colonization and early season symbiosis (McGonigle and Miller 1999). This early symbiosis allows plants to tap into the well-established hyphal network and be supplied with adequate phosphorus nutrition during early growth, which greatly improves the crop yield.

Soil quality

Restoration of native AM fungi increases the success of ecological restoration project and the rapidity of soil recovery. There is evidence to suggest that this enhancement of soil aggregate stability is due to the production of a soil protein known as glomalin
Glomalin
Glomalin is a glycoprotein produced abundantly on hyphae and spores of arbuscular mycorrhizal fungi in soil and in roots.As a glycoprotein, glomalin stores carbon in both its protein and its carbohydrate subunits. It permeates organic matter, binding it to silt, sand, and clay particles...

.

Glomalin-related soil proteins (GRSP) have been identified using a monoclonal
Monoclonal
Monoclonal cells are defined as a group of cells produced from a single ancestral cell by repeated cellular replication. Thus they can be said to form a single "clone". The process of replication can occur in vivo, or may be stimulated in vitro for laboratory manipulations...

 antibody
Antibody
An antibody, also known as an immunoglobulin, is a large Y-shaped protein used by the immune system to identify and neutralize foreign objects such as bacteria and viruses. The antibody recognizes a unique part of the foreign target, termed an antigen...

 (Mab32B11) raised against crushed AMF spores. It is defined by its extraction conditions and reaction with the antibody Mab32B11.

There is other circumstantial evidence to show that glomalin is of AM fungal origin. When AM fungi are eliminated from soil through incubation of soil without host plants, the concentration of GRSP declines. A similar decline in GRSP has also been observed in incubated soils from forested, afforested, and agricultural land and grasslands treated with fungicide.

Glomalin is hypothesized to improve soil aggregate water stability and decrease soil erosion. A strong correlation has been found between GRSP and soil aggregate water stability in a wide variety of soils where organic material is the main binding agent, although the mechanism is not known. The protein glomalin has not yet been isolated and described, and the link between glomalin, GRSP, and arbuscular mycorrhizal fungi is not yet clear.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK