Zygosity
Encyclopedia
Zygosity refers to the similarity of allele
s for a trait in an organism. If both alleles are the same, the organism is homozygous for the trait. If both alleles are different, the organism is heterozygous for that trait. If one allele is missing, it is hemizygous, and if both alleles are missing, it is nullizygous.
Most eukaryote
s have two matching sets of chromosomes, that is, they are diploid. Diploid organisms have the same genes on each of their two sets of homologous chromosomes, except that the sequences of these genes may differ between the two chromosomes in a matching pair and that a few chromosomes may be mismatched as part of a sex-determination system.
The DNA sequence of a gene usually varies from one individual to another. Those variations are called alleles. While some genes have only one allele because there is low variation, others only have one allele because only that allele can function properly. Any variation from the DNA sequence of that allele will be fatal in the embryo, and the organism will never survive to be born. But most genes have two or more alleles. The frequency of different alleles varies throughout the population. Some genes may have two alleles with equal distribution. For other genes, one allele may be common, and another allele may be rare. Sometimes, one allele is a disease
-causing variation while the other allele is healthy. Sometimes, the different variations in the alleles make no difference at all in the function of the organism.
In diploid organisms, one allele is inherited from the male parent and one from the female parent. Zygosity is a description of whether those two alleles have identical or different DNA sequences. In some cases the term "zygosity" is used in the context of a single chromosome.
of a diploid organism at a single locus
on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an otherwise diploid organism, and nullizygous refers to an otherwise diploid organism in which both copies of the gene are missing.
s are always homozygous for the traits that are to be held constant.
An individual that is homozygous dominant for a particular trait carries two copies of the allele that codes for the dominant trait. This allele, often called the "dominant allele", is normally represented by a capital letter (such as "P" for the dominant allele producing purple flowers in pea plants). When an organism is homozygous dominant for a particular trait, the genotype is represented by a doubling of the symbol for that trait, such as "PP".
An individual that is homozygous recessive for a particular trait carries two copies of the allele that codes for the recessive trait. This allele, often called the "recessive allele", is usually represented by the lowercase form of the letter used for the corresponding dominant trait (such as, with reference to the example above, "p" for the recessive allele producing white flowers in pea plants). The genotype of an organism that is homozygous recessive for a particular trait is represented by a doubling of the appropriate letter, such as "pp".
s of a gene. Heterozygous genotypes are represented by a capital letter (representing the dominant allele) and a lowercase letter (representing the recessive allele), such as "Rr" or "Ss". The capital letter is usually written first.
If the trait in question is determined by simple (complete) dominance, a heterozygote will express only the trait coded by the dominant allele and the trait coded by the recessive allele will not be present. In more complex dominance schemes the results of heterozygosity can be more complex.
sex when a gene is located on a sex chromosome. For organisms in which the male is heterogametic, such as humans, almost all X-linked genes are hemizygous in males with normal chromosomes because they have only one X chromosome
and few of the same genes are on the Y chromosome
. In a more extreme example, male honeybees (known as drones
) are completely hemizygous organisms. They develop from unfertilized eggs and their entire genome is haploid, unlike female honeybees, which are diploid. Transgenic mice generated through exogenous DNA microinjection of an embryo's pronucleus are also hemizygous, and can later be bred to homozygosity to reduce the need to confirm genotype of each litter.
Because the alleles of autozygous genotypes come from the same source, they are always homozygous, but allozygous genotypes may be homozygous too. All heterozygous genotypes are, by definition, allozygous because they contain two completely different alleles. Hemizygous and nullizygous genotypes do not contain enough alleles to allow for comparison of sources, so this classification is irrelevant for them.
.
, the concept of heterozygosity is commonly extended to refer to the population as a whole, i.e., the fraction of individuals in a population that are heterozygous for a particular locus. It can also refer to the fraction of loci within an individual that are heterozygous.
Typically, the observed() and expected() heterozygosities are compared, defined as follows for diploid individuals in a population:
Observed
where is the number of individuals in the population, and are the alleles of individual at the target locus.
Expected
where is the number of alleles at the target locus, and is the allele frequency
of the allele at the target locus.
Allele
An allele is one of two or more forms of a gene or a genetic locus . "Allel" is an abbreviation of allelomorph. Sometimes, different alleles can result in different observable phenotypic traits, such as different pigmentation...
s for a trait in an organism. If both alleles are the same, the organism is homozygous for the trait. If both alleles are different, the organism is heterozygous for that trait. If one allele is missing, it is hemizygous, and if both alleles are missing, it is nullizygous.
Most eukaryote
Eukaryote
A eukaryote is an organism whose cells contain complex structures enclosed within membranes. Eukaryotes may more formally be referred to as the taxon Eukarya or Eukaryota. The defining membrane-bound structure that sets eukaryotic cells apart from prokaryotic cells is the nucleus, or nuclear...
s have two matching sets of chromosomes, that is, they are diploid. Diploid organisms have the same genes on each of their two sets of homologous chromosomes, except that the sequences of these genes may differ between the two chromosomes in a matching pair and that a few chromosomes may be mismatched as part of a sex-determination system.
The DNA sequence of a gene usually varies from one individual to another. Those variations are called alleles. While some genes have only one allele because there is low variation, others only have one allele because only that allele can function properly. Any variation from the DNA sequence of that allele will be fatal in the embryo, and the organism will never survive to be born. But most genes have two or more alleles. The frequency of different alleles varies throughout the population. Some genes may have two alleles with equal distribution. For other genes, one allele may be common, and another allele may be rare. Sometimes, one allele is a disease
Genetic disorder
A genetic disorder is an illness caused by abnormalities in genes or chromosomes, especially a condition that is present from before birth. Most genetic disorders are quite rare and affect one person in every several thousands or millions....
-causing variation while the other allele is healthy. Sometimes, the different variations in the alleles make no difference at all in the function of the organism.
In diploid organisms, one allele is inherited from the male parent and one from the female parent. Zygosity is a description of whether those two alleles have identical or different DNA sequences. In some cases the term "zygosity" is used in the context of a single chromosome.
Types
The words homozygous, heterozygous, and hemizygous are used to describe the genotypeGenotype
The genotype is the genetic makeup of a cell, an organism, or an individual usually with reference to a specific character under consideration...
of a diploid organism at a single locus
Locus (genetics)
In the fields of genetics and genetic computation, a locus is the specific location of a gene or DNA sequence on a chromosome. A variant of the DNA sequence at a given locus is called an allele. The ordered list of loci known for a particular genome is called a genetic map...
on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an otherwise diploid organism, and nullizygous refers to an otherwise diploid organism in which both copies of the gene are missing.
Homozygous
A cell is said to be homozygous for a particular gene when identical alleles of the gene are present on both homologous chromosomes. The cell or organism in question is called a homozygote. True breeding organismTrue breeding organism
A true breeding organism, sometimes also called a pure-bred, is an organism having certain biological traits which are passed on to all subsequent generations when bred with another true breeding organism for the same traits...
s are always homozygous for the traits that are to be held constant.
An individual that is homozygous dominant for a particular trait carries two copies of the allele that codes for the dominant trait. This allele, often called the "dominant allele", is normally represented by a capital letter (such as "P" for the dominant allele producing purple flowers in pea plants). When an organism is homozygous dominant for a particular trait, the genotype is represented by a doubling of the symbol for that trait, such as "PP".
An individual that is homozygous recessive for a particular trait carries two copies of the allele that codes for the recessive trait. This allele, often called the "recessive allele", is usually represented by the lowercase form of the letter used for the corresponding dominant trait (such as, with reference to the example above, "p" for the recessive allele producing white flowers in pea plants). The genotype of an organism that is homozygous recessive for a particular trait is represented by a doubling of the appropriate letter, such as "pp".
Heterozygous
A diploid organism is heterozygous at a gene locus when its cells contain two different alleleAllele
An allele is one of two or more forms of a gene or a genetic locus . "Allel" is an abbreviation of allelomorph. Sometimes, different alleles can result in different observable phenotypic traits, such as different pigmentation...
s of a gene. Heterozygous genotypes are represented by a capital letter (representing the dominant allele) and a lowercase letter (representing the recessive allele), such as "Rr" or "Ss". The capital letter is usually written first.
If the trait in question is determined by simple (complete) dominance, a heterozygote will express only the trait coded by the dominant allele and the trait coded by the recessive allele will not be present. In more complex dominance schemes the results of heterozygosity can be more complex.
Hemizygous
A chromosome in a diploid organism is hemizygous when only one copy is present. The cell or organism is called a hemizygote. Hemizygosity is observed when one copy of a gene is deleted, or in the heterogameticSex linkage
Sex linkage is the phenotypic expression of an allele related to the chromosomal sex of the individual. This mode of inheritance is in contrast to the inheritance of traits on autosomal chromosomes, where both sexes have the same probability of inheritance...
sex when a gene is located on a sex chromosome. For organisms in which the male is heterogametic, such as humans, almost all X-linked genes are hemizygous in males with normal chromosomes because they have only one X chromosome
X chromosome
The X chromosome is one of the two sex-determining chromosomes in many animal species, including mammals and is common in both males and females. It is a part of the XY sex-determination system and X0 sex-determination system...
and few of the same genes are on the Y chromosome
Y chromosome
The Y chromosome is one of the two sex-determining chromosomes in most mammals, including humans. In mammals, it contains the gene SRY, which triggers testis development if present. The human Y chromosome is composed of about 60 million base pairs...
. In a more extreme example, male honeybees (known as drones
Drone (bee)
Drones are male honey bees. They develop from eggs that have not been fertilized, and they cannot sting, since the worker bee's stinger is a modified ovipositor .-Etymology:...
) are completely hemizygous organisms. They develop from unfertilized eggs and their entire genome is haploid, unlike female honeybees, which are diploid. Transgenic mice generated through exogenous DNA microinjection of an embryo's pronucleus are also hemizygous, and can later be bred to homozygosity to reduce the need to confirm genotype of each litter.
Nullizygous
A nullizygous organism carries two mutant alleles for the same gene. The mutant alleles are both complete loss-of-function or 'null' alleles, so homozygous null and nullizygous are synonymous. The mutant cell or organism is called a nullizygote.Autozygous and allozygous
Zygosity may also refer to the origin(s) of the alleles in a genotype. When the two alleles at a locus originate from a common ancestor by way of nonrandom mating (inbreeding), the genotype is said to be autozygous. This is also known as being "identical by descent", or IBD. When the two alleles come (at least to the extent that the descent can be traced) from completely different sources, as is the case in most normal, random mating, the genotype is called allozygous. This is known as being "identical by state", or IBS.Because the alleles of autozygous genotypes come from the same source, they are always homozygous, but allozygous genotypes may be homozygous too. All heterozygous genotypes are, by definition, allozygous because they contain two completely different alleles. Hemizygous and nullizygous genotypes do not contain enough alleles to allow for comparison of sources, so this classification is irrelevant for them.
Monozygotic and dizygotic twins
As discussed above, "zygosity" can be used in the context of a specific genetic locus (example). In addition, the word "zygosity" may also be used to describe the genetic similarity or dissimilarity of twins. Identical twins are monozygotic, meaning that they develop from one zygote that splits and forms two embryos. Fraternal twins are dizygotic because they develop from two separate eggs that are fertilized by two separate spermSperm
The term sperm is derived from the Greek word sperma and refers to the male reproductive cells. In the types of sexual reproduction known as anisogamy and oogamy, there is a marked difference in the size of the gametes with the smaller one being termed the "male" or sperm cell...
.
Heterozygosity in population genetics
In population geneticsPopulation genetics
Population genetics is the study of allele frequency distribution and change under the influence of the four main evolutionary processes: natural selection, genetic drift, mutation and gene flow. It also takes into account the factors of recombination, population subdivision and population...
, the concept of heterozygosity is commonly extended to refer to the population as a whole, i.e., the fraction of individuals in a population that are heterozygous for a particular locus. It can also refer to the fraction of loci within an individual that are heterozygous.
Typically, the observed() and expected() heterozygosities are compared, defined as follows for diploid individuals in a population:
Observed
where is the number of individuals in the population, and are the alleles of individual at the target locus.
Expected
where is the number of alleles at the target locus, and is the allele frequency
Allele frequency
Allele frequency or Gene frequency is the proportion of all copies of a gene that is made up of a particular gene variant . In other words, it is the number of copies of a particular allele divided by the number of copies of all alleles at the genetic place in a population. It can be expressed for...
of the allele at the target locus.
See also
- HeterosisHeterosisHeterosis, or hybrid vigor, or outbreeding enhancement, is the improved or increased function of any biological quality in a hybrid offspring. The adjective derived from heterosis is heterotic....
- Heterozygote advantageHeterozygote advantageA heterozygote advantage describes the case in which the heterozygote genotype has a higher relative fitness than either the homozygote dominant or homozygote recessive genotype. The specific case of heterozygote advantage is due to a single locus known as overdominance...
- Loss of heterozygosityLoss of heterozygosityLoss of heterozygosity in a cell is the loss of normal function of one allele of a gene in which the other allele was already inactivated. This term is mostly used in the context of oncogenesis; after an inactivating mutation in one allele of a tumor suppressor gene occurs in the parent's germline...
- Nucleotide diversityNucleotide diversityNucleotide diversity is a concept in molecular genetics which is used to measure the degree of polymorphism within a population.One commonly used measure of nucleotide diversity was first introduced by Nei and Li in 1979...
measures polymorphisms on the level of nucleotides rather than on level of loci.