Surface functionalization
Encyclopedia
Surface modification is the act of modifying the surface of a material by bringing physical, chemical or biological characteristics different from the ones originally found on the surface of a material.
This modification is usually made to solid materials, but it is possible to find examples of the modification to the surface of specific liquids.
The modification can be done by different methods with a view to altering a wide range of characteristics of the surface, such as: roughness, hydrophilicity, surface charge, surface energy, biocompatibility and reactivity.
is the sub-discipline of materials science
which deals with the surface
of solid matter. It has applications to chemistry
, mechanical engineering
, and electrical engineering
(particularly in relation to semiconductor manufacturing).
Solids are composed of a bulk material covered by a surface. The surface which bounds the bulk material is called the Surface phase. It acts as an interface to the surrounding environment. The bulk material in a solid is called the Bulk phase.
The surface phase of a solid interacts with the surrounding environment. This interaction can degrade the surface phase over time. Environmental degradation of the surface phase over time can be caused by wear
, corrosion
, fatigue
and creep
.
Surface engineering involves altering the properties of the Surface Phase in order to reduce the degradation over time. This is accomplished by making the surface robust to the environment in which it will be used.
In 1995, surface engineering was a ₤10 billion market in the United Kingdom. Coatings, to make surface life robust from wear and corrosion, was approximately half the market.
Functionalization of Antimicrobial Surfaces is a unique technology that can be used for sterilization in health industry, self-cleaning surfaces and protection from bio films.
In recent years, there has been a paradigm shift in surface engineering from age-old electroplating to processes such as vapor phase deposition, diffusion, thermal spray & welding using advanced heat sources like plasma, laser, ion, electron, microwave, solar beams, synchroton radiation, pulsed arc, pulsed combustion, spark, friction and induction.
It's estimated that loss due to wear and corrosion in the US is approximately $500 billion. In the US, there are around 9524 establishments (including automotive, aircraft, power and construction industries) who depend on engineered surfaces with support from 23,466 industries.
There are around 65 academic institutions world-wide engaged in surface engineering research and education.
s to a surface. This way, materials with functional groups on their surfaces can be designed from substrates with standard bulk material properties. Prominent examples can be found in semiconductor industry and biomaterial research.
technologies are successfully employed for polymers surface functionalization.
This modification is usually made to solid materials, but it is possible to find examples of the modification to the surface of specific liquids.
The modification can be done by different methods with a view to altering a wide range of characteristics of the surface, such as: roughness, hydrophilicity, surface charge, surface energy, biocompatibility and reactivity.
Surface engineering
Surface engineeringSurface engineering
Surface engineering is the sub-discipline of materials science which deals with the surface of solid matter. It has applications to chemistry, mechanical engineering, and electrical engineering ....
is the sub-discipline of materials science
Materials science
Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates...
which deals with the surface
Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 — for example, the surface of a ball...
of solid matter. It has applications to chemistry
Chemistry
Chemistry is the science of matter, especially its chemical reactions, but also its composition, structure and properties. Chemistry is concerned with atoms and their interactions with other atoms, and particularly with the properties of chemical bonds....
, mechanical engineering
Mechanical engineering
Mechanical engineering is a discipline of engineering that applies the principles of physics and materials science for analysis, design, manufacturing, and maintenance of mechanical systems. It is the branch of engineering that involves the production and usage of heat and mechanical power for the...
, and electrical engineering
Electrical engineering
Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics and electromagnetism. The field first became an identifiable occupation in the late nineteenth century after commercialization of the electric telegraph and electrical...
(particularly in relation to semiconductor manufacturing).
Solids are composed of a bulk material covered by a surface. The surface which bounds the bulk material is called the Surface phase. It acts as an interface to the surrounding environment. The bulk material in a solid is called the Bulk phase.
The surface phase of a solid interacts with the surrounding environment. This interaction can degrade the surface phase over time. Environmental degradation of the surface phase over time can be caused by wear
Wear
In materials science, wear is erosion or sideways displacement of material from its "derivative" and original position on a solid surface performed by the action of another surface....
, corrosion
Corrosion
Corrosion is the disintegration of an engineered material into its constituent atoms due to chemical reactions with its surroundings. In the most common use of the word, this means electrochemical oxidation of metals in reaction with an oxidant such as oxygen...
, fatigue
Fatigue (material)
'In materials science, fatigue is the progressive and localized structural damage that occurs when a material is subjected to cyclic loading. The nominal maximum stress values are less than the ultimate tensile stress limit, and may be below the yield stress limit of the material.Fatigue occurs...
and creep
Creep (deformation)
In materials science, creep is the tendency of a solid material to slowly move or deform permanently under the influence of stresses. It occurs as a result of long term exposure to high levels of stress that are below the yield strength of the material....
.
Surface engineering involves altering the properties of the Surface Phase in order to reduce the degradation over time. This is accomplished by making the surface robust to the environment in which it will be used.
Applications and Future of Surface Engineering
Surface engineering techniques are being used in the automotive, aerospace, missile, power, electronic, biomedical, textile, petroleum, petrochemical, chemical, steel, power, cement, machine tools, construction industries. Surface engineering techniques can be used to develop a wide range of functional properties, including physical, chemical, electrical, electronic, magnetic, mechanical, wear-resistant and corrosion-resistant properties at the required substrate surfaces. Almost all types of materials, including metals, ceramics, polymers, and composites can be coated on similar or dissimilar materials. It is also possible to form coatings of newer materials (e.g., met glass. beta-C3N4), graded deposits, multi-component deposits etc.In 1995, surface engineering was a ₤10 billion market in the United Kingdom. Coatings, to make surface life robust from wear and corrosion, was approximately half the market.
Functionalization of Antimicrobial Surfaces is a unique technology that can be used for sterilization in health industry, self-cleaning surfaces and protection from bio films.
In recent years, there has been a paradigm shift in surface engineering from age-old electroplating to processes such as vapor phase deposition, diffusion, thermal spray & welding using advanced heat sources like plasma, laser, ion, electron, microwave, solar beams, synchroton radiation, pulsed arc, pulsed combustion, spark, friction and induction.
It's estimated that loss due to wear and corrosion in the US is approximately $500 billion. In the US, there are around 9524 establishments (including automotive, aircraft, power and construction industries) who depend on engineered surfaces with support from 23,466 industries.
There are around 65 academic institutions world-wide engaged in surface engineering research and education.
Surface Functionalization
Surface functionalization introduces chemical functional groupFunctional group
In organic chemistry, functional groups are specific groups of atoms within molecules that are responsible for the characteristic chemical reactions of those molecules. The same functional group will undergo the same or similar chemical reaction regardless of the size of the molecule it is a part of...
s to a surface. This way, materials with functional groups on their surfaces can be designed from substrates with standard bulk material properties. Prominent examples can be found in semiconductor industry and biomaterial research.
Polymer Surface Functionalization
Plasma processingPlasma processing
Plasma processing is a plasma-based material processing technology that aims at modifying the chemical and physical properties of a surface.Plasma processing techniques include:*Plasma activation*Plasma etching*Plasma modification*Plasma functionalization...
technologies are successfully employed for polymers surface functionalization.
See also
- Surface finishingSurface finishingSurface finishing is a broad range of industrial processes that alter the surface of a manufactured item to achieve a certain property. Finishing processes may be employed to: improve appearance, adhesion or wettability, solderability, corrosion resistance, tarnish resistance, chemical resistance,...
- Surface scienceSurface scienceSurface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid-gas interfaces. It includes the fields of surface chemistry and surface physics. Some related...
- TribologyTribologyTribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication and wear...
- Surface metrologySurface metrologySurface metrology is the measurement of small-scale features on surfaces, and is a branch of metrology. Surface primary form, surface waviness and surface roughness are the parameters most commonly associated with the field...
- HEF Group, surface engineering company
- Surface modification of biomaterials with proteinsSurface modification of biomaterials with proteinsBiomaterials are materials that are used in contact with biological systems. Biocompatibility and applicability of surface modification with current uses of metallic, polymeric and ceramic biomaterials allow alteration of properties to enhance performance in a biological environment while...