Self-linking number
Encyclopedia
In knot theory
Knot theory
In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined together so that it cannot be undone. In precise mathematical language, a knot is an embedding of a...

, the self-linking number is an invariant
Knot invariant
In the mathematical field of knot theory, a knot invariant is a quantity defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers, but invariants can range from the...

 of framed knot
Framed knot
In the mathematical theory of knots, a framed knot is the extension of a tame knot to an embedding of the solid torus D2 × S1 in S3....

s. It is related to the linking number
Linking number
In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other...

 of curves.

A framing of a knot
Knot (mathematics)
In mathematics, a knot is an embedding of a circle in 3-dimensional Euclidean space, R3, considered up to continuous deformations . A crucial difference between the standard mathematical and conventional notions of a knot is that mathematical knots are closed—there are no ends to tie or untie on a...

 is a choice of a non-tangent vector at each point of the knot. Given a framed knot C, the self-linking number is defined to be the linking number
Linking number
In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other...

 of C with a new curve obtained by pushing points of C along the framing vectors.

Given a Seifert surface
Seifert surface
In mathematics, a Seifert surface is a surface whose boundary is a given knot or link.Such surfaces can be used to study the properties of the associated knot or link. For example, many knot invariants are most easily calculated using a Seifert surface...

 for a knot, the associated Seifert framing is obtained by taking a tangent vector to the surface pointing inwards and perpendicular to the knot. The self-linking number obtained from a Seifert framing is always zero.

The blackboard framing of a knot is the framing where each of the vectors points in the vertical (z) direction. The self-linking number obtained from the blackboard framing is called the Kauffman self-linking number of the knot. This is not a knot invariant
Knot invariant
In the mathematical field of knot theory, a knot invariant is a quantity defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers, but invariants can range from the...

 because it is only well-defined up to regular isotopy
Regular isotopy
In the mathematical subject of knot theory, a regular isotopy of a link diagram is the equivalence relation generated by using the 2nd and 3rd Reidemeister moves only. The notion of regular isotopy was introduced by Louis Kauffman . It can be thought of as an isotopy of a ribbon pressed flat...

.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK