Pentagrid converter
Encyclopedia
The pentagrid converter is a radio receiving valve (vacuum tube
) with five grids used as the frequency mixer
stage of a superheterodyne radio receiver.
The pentagrid was part of a line of development of valves that were able to take an incoming RF signal and change its frequency to a fixed intermediate frequency
which was then amplified, and detected in the remainder of the receiver circuitry. The device was generically referred to as a frequency changer or just mixer.
valve (the bi-grille). Although technically a four component electrode device, neither the term tetrode
nor the tetrode valve as we know it today had yet appeared. Each grid was able to accept one of the incoming signals and the non-linearity of the device produced the sum and difference frequencies. The valve would have been very inefficient but, most importantly, the capacitive coupling between the two grids would have been very large. It would therefore have been quite impossible to prevent the signal from one grid coupling out of the other. At least one reference claims that the bi-grille was self oscillating, but this has not been confirmed.
When Edwin Armstrong
invented the superheterodyne receiver
in 1918, although the tetrode
had been invented a couple of years earlier, he nevertheless employed only triodes in his design. Armstrong employed a pair of triodes as his mixer stage. One operated in a conventional oscillator circuit, but he was able to employ the other as a mixer by coupling the oscillator signal into the mixer's cathode, and the received signal to the grid. The sum and difference frequencies were then available in the mixer's anode
(or plate) circuit. Once again, the problem of coupling between the circuits would be ever present.
Shortly after Armstrong invented the superhet, a triode mixer stage design was developed that not only mixed the incoming signal with the local oscillator, but the same valve doubled as the oscillator. This was known as the autodyne
mixer. Early examples had difficulty oscillating across the frequency range because the oscillator feedback was via the first intermediate frequency
transformer
primary tuning capacitor which was too small to give good feedback. Also keeping the oscillator signal out of the antenna
circuit was difficult.
The invention of the tetrode demonstrated the idea of screening electrodes from each other by using additional earthed (grounded) grids (at least as far as the signal was concerned). In 1926, Philips invented a technique of adding yet another grid to combat the secondary emission
that the tetrode suffered from. All the ingredients for the pentagrid were now in place.
The invention of the device at first sight doesn't seem to be obscure, but it would appear that it was developed in both America and the United Kingdom, more or less at the same time. However, the UK device is different to its American counterpart.
It is known that Donald G. Haines of RCA applied for a patent for the pentagrid on 28 March 1933 (subsequently granted on 29 March 1939) under US patent number 2,148,266. The pentagrid also featured in a UK patent (GB426802) granted on 10 April 1935. However, the Ferranti company of Great Britain entered the valve business with the first known UK produced pentagrid, the VHT4 late in 1933 (though it must have been in development, and would certainly have existed as a prototype well before this time).
The pentagrid proved to be a much better mixer. Since the oscillator circuit was more or less self contained, good feedback for reliable oscillation across the frequency range was easy to obtain. Some manufacturers that had adopted the autodyne
mixer converted some, if not all, of their designs to pentagrid mixers.
What was the goal to develop a reliable self oscillating mixer? The reasons were to differ from the UK to America. The UK radio manufacturers had to pay a royalty of £1 per valve holder to the British Valve Association
to cover use of their members' patent rights. Further, they dictated than not more than one electrode structure could be contained in a single envelope (which would have evaded the royalty - at least in part). The Americans appeared to be driven by the desire to produce a low cost 'every expense spared' design which was to lead to the All American Five
. By making the mixer self oscillate, the necessity of providing a separate oscillator valve is avoided. The All American Five was to use a pentagrid converter from when it first appeared in 1934, right up until valves became obsolete when transistors took over.
In the UK, the five grids operated thus. Grid 1 acted as the oscillator grid in conjunction with grid 2 which acted as its anode. Grid 4 accepted the incoming signal with the remaining two grids, 3 and 5 connected together (usually internally) which acted as screen grids to screen the anode, grid 4 and grid 2 from each other. Because grid 2 was a 'leaky' anode in that it allowed part of the modulated electron stream through, the oscillator was coupled into the mixing section of the valve. In fact, in some designs, grid 2 consisted of just the support rods, the actual grid wire itself being omitted.
In America, the configuration was different. Grid 1 acted as the oscillator grid as before, but in this case, grids 2 and 4 were connected together (again usually internally). Grid 2 functioned as both a screen and the oscillator anode, in this case the grid wire had to be present to provide the screening. Grid 3 accepted the incoming signal. Grid 4 screened this from the anode, and grid 5 was a suppressor grid to suppress secondary emission. This configuration limited the oscillator design to one where the oscillator 'anode' was operated from the HT+ (B+) rail. This was often accomplished by using a Hartley Oscillator
circuit and taking the cathode to the tap on the coil.
It will be noted that the UK version would have had significant secondary emission and would also have had a tetrode kink
. This was exploited in providing the non linearity necessary to produce good sum and difference signals. The American devices although having no secondary emission due to the suppressor grid, nevertheless were able to get the required non linearity by biasing the oscillator such that the valve was overdriven. The American version was also a little more sensitive because the grid that accepted the signal was closer to the cathode increasing the amplification factor.
The pentagrid converter in either guise operated extremely well, but it suffered from the limitation that a strong signal was able to 'pull' the oscillator frequency away from a weaker signal. This was not considered a major problem in broadcast receivers where the signals were likely to be strong, but it became a problem when trying to receive weak signals that were close to strong signals. Some short wave radios managed quite satisfactorily with these devices. Special high frequency versions appeared after World War II for the 100 MHz FM bands. Examples are the 6SB7Y (1946) and the 6BA7 (1948). The pulling effect had a beneficial side effect in that it gave a degree of automatic tuning.
Another disadvantage was that in spite of the presence of the screen grids, the electron beam, modulated by the oscillator electrodes, still had to pass through the signal grid, and coupling of the oscillator into the signal circuit was inevitable. The American Federal Communication Commission (FCC) started requiring radio manufacturers to certify that their products avoided this interference under Part 15 of their rules. In the UK the Postmaster General (who was responsible for radio licensing), laid down a set of stringent rules concerning radio interference.
It was not long before they put the triode and hexode structures in the same glass envelope - by no means a new idea. The triode grid was usually internally connected to the hexode grid 3, but this practice was dropped in later designs when the mixer section operated as a straight IF amplifier in AM/FM sets when operating on FM, the mixing being carried out in a dedicated FM frequency changing section.
The UK manufacturers were initially unable to use this type of mixer because of the BVA
prohibition on multiple structures (and indeed separate valves because of the levy). Indeed one UK company, MOV, successfully enforced the cartel rules against the German Lissen company in 1934 when they attempted to market a radio in the UK which had the triode-hexode mixer.
Following pressure from the UK manufacturers, the BVA were compelled to relax the rules and the UK started to adopt triode-hexode mixers. The Mullard
ECH35 was a popular choice.
One company, Osram
, made an ingenious move. One of their popular pentagrid converter designs was the MX40, initially marketed in 1934. They put on sale in 1936, the X41 triode-hexode frequency changer. The clever bit was that the X41 was a direct plug in pin compatible replacement for the MX40. Thus a pentagrid radio could be easily converted to a triode-hexode without any other circuit modifications.
It is interesting to note, that America never really adopted the triode-hexode and it was seldom used, even though the 6K8 triode-hexode was available to manufacturers in 1938.
In some designs, a suppressor grid was added to produce yet another heptode design. Mullard's ECH81 became popular with the move to miniature 9 pin valves.
In North America, the only octode manufactured was the 7A8. Introduced by Sylvania
in 1939 (and used mostly by Philco
), this valve was the product of adding a suppressor grid to type 7B8, which was the loctal version of type 6A7. Adding the suppressor allowed Sylvania to lower the current of the 6.3 volt heater from 300 milliamperes to 150 milliamperes while maintaining the same conversion transconductance
(550 microsiemens). This allowed Philco to use this valve in every line of radio throughout the 1940s.
One octode design worthy of mention was the Philips EK3 Octode. This was designated as a 'beam octode'. The novel part about the design was that grids 2 and 3 were constructed as beam forming plates. This was done in such a way that Philips claimed that the oscillator electron beam and the mixer electron beams were separated as much as possible and thus the pulling effect was minimised. No information is available as to the degree of success.
would seem an unlikely choice for a frequency converter. However, during the Great Depression
, many American radio manufacturers used pentode types 6C6, 6D6, 77 and 78 in their lowest priced AC/DC receivers because they were cheaper than pentagrid type 6A7. In these circuits, the suppressor (grid 3) acted as the oscillator grid.
One UK company, Mazda
, produced a triode-pentode frequency changer, the AC/TP. Designed for low cost AC radios, the device was deliberately designed to allow strong signals to pull the oscillator without the risk of radiating the oscillator signal from the aerial. The cathode was common to both sections of the valve. The cathode was connected to a secondary coil on the oscillator coil and thus coupled the oscillator into the pentode mixer section, the signal being applied to grid 1 in the conventional manner. The AC/TP was one of the AC/ range of valves designed for low cost radios. They were considered durable for their time (even the AC/TP frequency changer, which was normally problematic). Any AC/ valves encountered today are likely to be brand new as service shops stocked up on spares which were seldom required.
This list is by no means exhaustive.
The All American Five
used a number of valve types in its history and the reader is referred to that article for a listing of the different types used.
Vacuum tube
In electronics, a vacuum tube, electron tube , or thermionic valve , reduced to simply "tube" or "valve" in everyday parlance, is a device that relies on the flow of electric current through a vacuum...
) with five grids used as the frequency mixer
Frequency mixer
In electronics a mixer or frequency mixer is a nonlinear electrical circuit that creates new frequencies from two signals applied to it. In its most common application, two signals at frequencies f1 and f2 are applied to a mixer, and it produces new signals at the sum f1 + f2 and difference f1 -...
stage of a superheterodyne radio receiver.
The pentagrid was part of a line of development of valves that were able to take an incoming RF signal and change its frequency to a fixed intermediate frequency
Intermediate frequency
In communications and electronic engineering, an intermediate frequency is a frequency to which a carrier frequency is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier signal with a local oscillator signal in a process called...
which was then amplified, and detected in the remainder of the receiver circuitry. The device was generically referred to as a frequency changer or just mixer.
Origins
The first devices designed to change frequency in the manner described above seem to have been developed by the French who simply put two grids into what would otherwise have been an ordinary triodeTriode
A triode is an electronic amplification device having three active electrodes. The term most commonly applies to a vacuum tube with three elements: the filament or cathode, the grid, and the plate or anode. The triode vacuum tube was the first electronic amplification device...
valve (the bi-grille). Although technically a four component electrode device, neither the term tetrode
Tetrode
A tetrode is an electronic device having four active electrodes. The term most commonly applies to a two-grid vacuum tube. It has the three electrodes of a triode and an additional screen grid which significantly changes its behaviour.-Control grid:...
nor the tetrode valve as we know it today had yet appeared. Each grid was able to accept one of the incoming signals and the non-linearity of the device produced the sum and difference frequencies. The valve would have been very inefficient but, most importantly, the capacitive coupling between the two grids would have been very large. It would therefore have been quite impossible to prevent the signal from one grid coupling out of the other. At least one reference claims that the bi-grille was self oscillating, but this has not been confirmed.
When Edwin Armstrong
Edwin Armstrong
Edwin Howard Armstrong was an American electrical engineer and inventor. Armstrong was the inventor of modern frequency modulation radio....
invented the superheterodyne receiver
Superheterodyne receiver
In electronics, a superheterodyne receiver uses frequency mixing or heterodyning to convert a received signal to a fixed intermediate frequency, which can be more conveniently processed than the original radio carrier frequency...
in 1918, although the tetrode
Tetrode
A tetrode is an electronic device having four active electrodes. The term most commonly applies to a two-grid vacuum tube. It has the three electrodes of a triode and an additional screen grid which significantly changes its behaviour.-Control grid:...
had been invented a couple of years earlier, he nevertheless employed only triodes in his design. Armstrong employed a pair of triodes as his mixer stage. One operated in a conventional oscillator circuit, but he was able to employ the other as a mixer by coupling the oscillator signal into the mixer's cathode, and the received signal to the grid. The sum and difference frequencies were then available in the mixer's anode
Anode
An anode is an electrode through which electric current flows into a polarized electrical device. Mnemonic: ACID ....
(or plate) circuit. Once again, the problem of coupling between the circuits would be ever present.
Shortly after Armstrong invented the superhet, a triode mixer stage design was developed that not only mixed the incoming signal with the local oscillator, but the same valve doubled as the oscillator. This was known as the autodyne
Autodyne
The autodyne circuit was an improvement to radio signal amplification using the De Forest Audion vacuum tube amplifier. By allowing the tube to oscillate at a frequency slightly different from the desired signal, the sensitivity over other receivers was greatly improved. The autodyne circuit was...
mixer. Early examples had difficulty oscillating across the frequency range because the oscillator feedback was via the first intermediate frequency
Intermediate frequency
In communications and electronic engineering, an intermediate frequency is a frequency to which a carrier frequency is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier signal with a local oscillator signal in a process called...
transformer
Transformer
A transformer is a device that transfers electrical energy from one circuit to another through inductively coupled conductors—the transformer's coils. A varying current in the first or primary winding creates a varying magnetic flux in the transformer's core and thus a varying magnetic field...
primary tuning capacitor which was too small to give good feedback. Also keeping the oscillator signal out of the antenna
Antenna (radio)
An antenna is an electrical device which converts electric currents into radio waves, and vice versa. It is usually used with a radio transmitter or radio receiver...
circuit was difficult.
The invention of the tetrode demonstrated the idea of screening electrodes from each other by using additional earthed (grounded) grids (at least as far as the signal was concerned). In 1926, Philips invented a technique of adding yet another grid to combat the secondary emission
Secondary emission
Secondary emission in physics is a phenomenon where primary incident particles of sufficient energy, when hitting a surface or passing through some material, induce the emission of secondary particles. The primary particles are often charged particles like electrons or ions. If the secondary...
that the tetrode suffered from. All the ingredients for the pentagrid were now in place.
The Pentagrid
The development of the pentagrid or heptode valve was a novel development in the mixer story. The idea was to produce a single valve that not only mixed the oscillator signal and the received signal and produced its own oscillator signal at the same time but, importantly, did the mixing and the oscillating in different parts of the same valve.The invention of the device at first sight doesn't seem to be obscure, but it would appear that it was developed in both America and the United Kingdom, more or less at the same time. However, the UK device is different to its American counterpart.
It is known that Donald G. Haines of RCA applied for a patent for the pentagrid on 28 March 1933 (subsequently granted on 29 March 1939) under US patent number 2,148,266. The pentagrid also featured in a UK patent (GB426802) granted on 10 April 1935. However, the Ferranti company of Great Britain entered the valve business with the first known UK produced pentagrid, the VHT4 late in 1933 (though it must have been in development, and would certainly have existed as a prototype well before this time).
The pentagrid proved to be a much better mixer. Since the oscillator circuit was more or less self contained, good feedback for reliable oscillation across the frequency range was easy to obtain. Some manufacturers that had adopted the autodyne
Autodyne
The autodyne circuit was an improvement to radio signal amplification using the De Forest Audion vacuum tube amplifier. By allowing the tube to oscillate at a frequency slightly different from the desired signal, the sensitivity over other receivers was greatly improved. The autodyne circuit was...
mixer converted some, if not all, of their designs to pentagrid mixers.
What was the goal to develop a reliable self oscillating mixer? The reasons were to differ from the UK to America. The UK radio manufacturers had to pay a royalty of £1 per valve holder to the British Valve Association
British Valve Association
The British Valve Association was a cartel of valve manufacturers in the United Kingdom of Great Britain and Northern Ireland that was designed to protect their interests from foreign competition...
to cover use of their members' patent rights. Further, they dictated than not more than one electrode structure could be contained in a single envelope (which would have evaded the royalty - at least in part). The Americans appeared to be driven by the desire to produce a low cost 'every expense spared' design which was to lead to the All American Five
All American Five
The term All American Five is a colloquial name for mass-produced, superheterodyne radio receivers that used five vacuum tubes in their design. These radio sets were designed to receive amplitude modulation broadcasts in the medium wave band, and were manufactured in the United States from the mid...
. By making the mixer self oscillate, the necessity of providing a separate oscillator valve is avoided. The All American Five was to use a pentagrid converter from when it first appeared in 1934, right up until valves became obsolete when transistors took over.
In the UK, the five grids operated thus. Grid 1 acted as the oscillator grid in conjunction with grid 2 which acted as its anode. Grid 4 accepted the incoming signal with the remaining two grids, 3 and 5 connected together (usually internally) which acted as screen grids to screen the anode, grid 4 and grid 2 from each other. Because grid 2 was a 'leaky' anode in that it allowed part of the modulated electron stream through, the oscillator was coupled into the mixing section of the valve. In fact, in some designs, grid 2 consisted of just the support rods, the actual grid wire itself being omitted.
In America, the configuration was different. Grid 1 acted as the oscillator grid as before, but in this case, grids 2 and 4 were connected together (again usually internally). Grid 2 functioned as both a screen and the oscillator anode, in this case the grid wire had to be present to provide the screening. Grid 3 accepted the incoming signal. Grid 4 screened this from the anode, and grid 5 was a suppressor grid to suppress secondary emission. This configuration limited the oscillator design to one where the oscillator 'anode' was operated from the HT+ (B+) rail. This was often accomplished by using a Hartley Oscillator
Hartley oscillator
The Hartley oscillator is an electronic oscillator circuit that uses an inductor and a capacitor in parallel to determine the frequency. Invented in 1915 by American engineer Ralph Hartley, the distinguishing feature of the Hartley circuit is that the feedback needed for oscillation is taken from...
circuit and taking the cathode to the tap on the coil.
It will be noted that the UK version would have had significant secondary emission and would also have had a tetrode kink
Tetrode
A tetrode is an electronic device having four active electrodes. The term most commonly applies to a two-grid vacuum tube. It has the three electrodes of a triode and an additional screen grid which significantly changes its behaviour.-Control grid:...
. This was exploited in providing the non linearity necessary to produce good sum and difference signals. The American devices although having no secondary emission due to the suppressor grid, nevertheless were able to get the required non linearity by biasing the oscillator such that the valve was overdriven. The American version was also a little more sensitive because the grid that accepted the signal was closer to the cathode increasing the amplification factor.
The pentagrid converter in either guise operated extremely well, but it suffered from the limitation that a strong signal was able to 'pull' the oscillator frequency away from a weaker signal. This was not considered a major problem in broadcast receivers where the signals were likely to be strong, but it became a problem when trying to receive weak signals that were close to strong signals. Some short wave radios managed quite satisfactorily with these devices. Special high frequency versions appeared after World War II for the 100 MHz FM bands. Examples are the 6SB7Y (1946) and the 6BA7 (1948). The pulling effect had a beneficial side effect in that it gave a degree of automatic tuning.
Another disadvantage was that in spite of the presence of the screen grids, the electron beam, modulated by the oscillator electrodes, still had to pass through the signal grid, and coupling of the oscillator into the signal circuit was inevitable. The American Federal Communication Commission (FCC) started requiring radio manufacturers to certify that their products avoided this interference under Part 15 of their rules. In the UK the Postmaster General (who was responsible for radio licensing), laid down a set of stringent rules concerning radio interference.
The Hexode
It may come as a surprise that the Hexode was actually developed after the heptode or pentagrid. It was developed in Germany as a mixer but was designed from the start to be used with a separate triode oscillator. Thus the grid configuration was grid 1, signal input; grids 2 and 4 screen grids (connected together - again, usually internally) and grid 3 was the oscillator input. The device had no suppressor grid. A major advantage was that by using grid 1 as the signal input grid, the device was more sensitive to weak signals.It was not long before they put the triode and hexode structures in the same glass envelope - by no means a new idea. The triode grid was usually internally connected to the hexode grid 3, but this practice was dropped in later designs when the mixer section operated as a straight IF amplifier in AM/FM sets when operating on FM, the mixing being carried out in a dedicated FM frequency changing section.
The UK manufacturers were initially unable to use this type of mixer because of the BVA
British Valve Association
The British Valve Association was a cartel of valve manufacturers in the United Kingdom of Great Britain and Northern Ireland that was designed to protect their interests from foreign competition...
prohibition on multiple structures (and indeed separate valves because of the levy). Indeed one UK company, MOV, successfully enforced the cartel rules against the German Lissen company in 1934 when they attempted to market a radio in the UK which had the triode-hexode mixer.
Following pressure from the UK manufacturers, the BVA were compelled to relax the rules and the UK started to adopt triode-hexode mixers. The Mullard
Mullard
Mullard Limited was a British manufacturer of electronic components. The Mullard Radio Valve Co. Ltd. of Southfields, London, was founded in 1920 by Captain Stanley R. Mullard, who had previously designed valves for the Admiralty before becoming managing director of the Z Electric Lamp Co. The...
ECH35 was a popular choice.
One company, Osram
Osram
Osram, founded 1919, is part of the industry sector of Siemens AG and one of the two leading lighting manufacturers in the world. The name is derived from osmium and Wolfram , as both these elements were commonly used for lighting filaments at the time the company was founded...
, made an ingenious move. One of their popular pentagrid converter designs was the MX40, initially marketed in 1934. They put on sale in 1936, the X41 triode-hexode frequency changer. The clever bit was that the X41 was a direct plug in pin compatible replacement for the MX40. Thus a pentagrid radio could be easily converted to a triode-hexode without any other circuit modifications.
It is interesting to note, that America never really adopted the triode-hexode and it was seldom used, even though the 6K8 triode-hexode was available to manufacturers in 1938.
In some designs, a suppressor grid was added to produce yet another heptode design. Mullard's ECH81 became popular with the move to miniature 9 pin valves.
The Octode
Although not strictly a pentagrid (in that it does not have 5 grids), this device nevertheless operates on the pentagrid principle. It resulted simply from the addition of a suppressor grid to the UK version of the pentagrid heptode. This was done mainly to reduce the power consumption for use in radio sets operated by dry batteries that were becoming increasingly popular.In North America, the only octode manufactured was the 7A8. Introduced by Sylvania
Osram Sylvania
Osram Sylvania Inc. is the North American operation of lighting manufacturer Osram GmbH, which is owned by Siemens AG. It was established in January 1993, with the acquisition of GTE’s Sylvania lighting division by Osram GmbH....
in 1939 (and used mostly by Philco
Philco
Philco, the Philadelphia Storage Battery Company , was a pioneer in early battery, radio, and television production as well as former employer of Philo Farnsworth, inventor of cathode ray tube television...
), this valve was the product of adding a suppressor grid to type 7B8, which was the loctal version of type 6A7. Adding the suppressor allowed Sylvania to lower the current of the 6.3 volt heater from 300 milliamperes to 150 milliamperes while maintaining the same conversion transconductance
Transconductance
Transconductance, also known as mutual conductance, is a property of certain electronic components. Conductance is the reciprocal of resistance; transconductance, meanwhile, is the ratio of the current change at the output port to the voltage change at the input port. It is written as gm...
(550 microsiemens). This allowed Philco to use this valve in every line of radio throughout the 1940s.
One octode design worthy of mention was the Philips EK3 Octode. This was designated as a 'beam octode'. The novel part about the design was that grids 2 and 3 were constructed as beam forming plates. This was done in such a way that Philips claimed that the oscillator electron beam and the mixer electron beams were separated as much as possible and thus the pulling effect was minimised. No information is available as to the degree of success.
The Pentode
The use of a pentodePentode
A pentode is an electronic device having five active electrodes. The term most commonly applies to a three-grid vacuum tube , which was invented by the Dutchman Bernhard D.H. Tellegen in 1926...
would seem an unlikely choice for a frequency converter. However, during the Great Depression
Great Depression
The Great Depression was a severe worldwide economic depression in the decade preceding World War II. The timing of the Great Depression varied across nations, but in most countries it started in about 1929 and lasted until the late 1930s or early 1940s...
, many American radio manufacturers used pentode types 6C6, 6D6, 77 and 78 in their lowest priced AC/DC receivers because they were cheaper than pentagrid type 6A7. In these circuits, the suppressor (grid 3) acted as the oscillator grid.
One UK company, Mazda
Mazda (light bulb)
Mazda was a trademarked name created by the Shelby Electric Company for incandescent light bulbs. The name was used from 1909 through 1945 in the United States by Shelby and later General Electric; Mazda brand light bulbs were made for decades after 1945 outside the USA...
, produced a triode-pentode frequency changer, the AC/TP. Designed for low cost AC radios, the device was deliberately designed to allow strong signals to pull the oscillator without the risk of radiating the oscillator signal from the aerial. The cathode was common to both sections of the valve. The cathode was connected to a secondary coil on the oscillator coil and thus coupled the oscillator into the pentode mixer section, the signal being applied to grid 1 in the conventional manner. The AC/TP was one of the AC/ range of valves designed for low cost radios. They were considered durable for their time (even the AC/TP frequency changer, which was normally problematic). Any AC/ valves encountered today are likely to be brand new as service shops stocked up on spares which were seldom required.
Nomenclature
In order to distinguish between the two versions of the heptode or pentagrid, manufacturers data often describes them as 'heptode of the Hexode type' for a heptode without a suppressor grid, and a 'heptode of the octode type', where a suppressor grid is present.North American types
- For battery-powered home and portable radios
- 1A6 - Dual-tetrode pentagrid used in 1930s battery-operated radios. Has 2.0 volt filament powered by 2 volt storage battery or, with ballast valve, 3 volt "air cell." Due to low filament current (60 ma), this valve is not used in circuits that tune shortwaveShortwaveShortwave radio refers to the upper MF and all of the HF portion of the radio spectrum, between 1,800–30,000 kHz. Shortwave radio received its name because the wavelengths in this band are shorter than 200 m which marked the original upper limit of the medium frequency band first used...
frequencies above 10 meghertz. Octal version: 1D7-G - 1C6 - Like type 1A6, but with a higher filament current (120 ma) that allows it to tune frequencies up to 20 megahertz. Octal version: 1C7-G
- 1A7-GT - Re-engineered version of types 1A6 and 1D7-G, designed for use in portable AC/DC/Dry-cell battery radios introduced in 1938. Has 1.4 volt, 50 milliampere filament.
- 1B7-GT - Re-engineered version of types 1C6 and 1C7-G, designed for use in dry-cell battery radios with shortwave bands. Has 1.4 volt, 100 milliampere filament which makes it incompatible with 50 milliampere AC/DC filament strings.
- 1LA6 (loctal) and later 1L6 (7-pin miniature) – battery pentagrid for Zenith Trans-Oceanic short wave radio.
- 1LC6 - Similar to type 1LA6, but with higher conversion transconductance.
- 1U6 - Nearly identical to type 1L6, but with a 1.4 volt, 25 milliampere filament that makes it incompatible with 50 milliampere AC/DC filament strings.
- 1E8 - Subminiature "triode-pentode" pentagrid type
- 1V6 - Subminiature triode-pentode non-pentagrid converter
- 1R5 - "Triode-pentode" pentagrid used in many portable radios from 1941 to the beginning of the transistor radio era.
- 1A6 - Dual-tetrode pentagrid used in 1930s battery-operated radios. Has 2.0 volt filament powered by 2 volt storage battery or, with ballast valve, 3 volt "air cell." Due to low filament current (60 ma), this valve is not used in circuits that tune shortwave
- For AC or AC/DC powered radios
- 2A7 and 6A7 – The first of the RCA pentagrids 1933, "dual-tetrode" design.
- 6A8 and 12A8 - Octal versions of types 2A7 and 6A7. Type 12A8 was used in the first 150 milliampere AC/DC models.
- 7B8 and 14B8 - Loctal versions of types 6A8 and 12A8.
- 7Q7 and 14Q7 - Loctal versions of types 6SA7 and 12SA7.
- 6BE6 and 12BE6 - Seven-pin miniature versions of types 6SA7 and 12SA7.
- 6J8-G - American triode-heptode, 1938.
- 6K8 and 12K8 – American Triode-Hexode, 1938.
- 6SB7Y (octal), 6BA7 and 12BA7 (9-pin miniatures) – Pentagrids for VHF use 1946
- 7A8 – the only octode produced in America by Sylvania, 1939. Used mostly in PhilcoPhilcoPhilco, the Philadelphia Storage Battery Company , was a pioneer in early battery, radio, and television production as well as former employer of Philo Farnsworth, inventor of cathode ray tube television...
radios. - 18FX6 - Low-current (100 ma heater) version of type 12BE6.
- For equipment powered by 12-volt car batteries (all have 12.6 volt heater, screen and plate voltages)
- 12FA6 - Car radio version of 12BE6.
- 12GA6 - Similar to type 12FA6, but with lower conversion transconductance.
- 12FX8 - Triode-heptode converter for car radios. Screen and both plate voltages rated at 12.6 volts.
European types
- VHT1 – Ferranti pentagrid 1933.
- MX40 – Osram pentagrid 1934.
- X41 – Osram Triode Hexode 1936 – Plug-in replacement for MX40
- ECH35 – Mullard Triode-Hexode
- EK3 – Beam octode produced by Philips.
- ECH81 – Mullard Triode-Heptode (of the hexode type) as well the 6И1П Soviet version.
- DK96 – Mullard / Philips Heptode for Battery Portables. 1955+
- 15A2, 15D1 and 15D2 - British (Brimar) dual-triode pentagrids similar to American type 6A7. Home receiver type 15A2 has a 4.0 volt, 650 mA heater. Car radio types 15D1 and 15D2 have 13.0 volt heaters with 200 mA and 150 mA current ratings, respectively.
This list is by no means exhaustive.
The All American Five
All American Five
The term All American Five is a colloquial name for mass-produced, superheterodyne radio receivers that used five vacuum tubes in their design. These radio sets were designed to receive amplitude modulation broadcasts in the medium wave band, and were manufactured in the United States from the mid...
used a number of valve types in its history and the reader is referred to that article for a listing of the different types used.
Other mixer valves
- 6L7 - Superheterodyne mixer used in high-end console receivers of the late 1930s and early 1940s. (Most commonly used by Zenith.) Grid 1 is control grid (remote cutoffCut-off (electronics)In electronics, the term Cut-off identifies a state of negligible electrical conduction which is proper of several types of electronic components when a control parameter , is lowered or increased past a value called conduction threshold or simply...
). Grid 3 is local oscillator signal injector. Local oscillator is always a separate valve, often a 6C5. Due to low relatively conversion transconductance (350 µmhos), this valve is always fed by at least one tuned RF amplifier. - 1612 - Audio mixer version of type 6L7. Both control grids (1 and 3) are sharp-cutoff. Engineered to be less likely to develop microphonicsMicrophonicsMicrophonics describes the phenomenon where certain components in electronic devices transform mechanical vibrations into an undesired electrical signal...
. - 1LB6 - Superheterodyne mixer for battery-operated radios. Like type 6L7, works with a separate oscillator and tuned RF amplifier. Can be used with AC/DC/Dry-cell battery power supplies.
- 1j37b - Dual control grid Pentode mixer or Mixer/Oscillator for battery-operated radios. Also good for AGC. Russian Military 1959 to 1991
- FM-1000 - Combined oscillator and quadrature FM detector for early post-war Philco radios. Manufactured only by SylvaniaOsram SylvaniaOsram Sylvania Inc. is the North American operation of lighting manufacturer Osram GmbH, which is owned by Siemens AG. It was established in January 1993, with the acquisition of GTE’s Sylvania lighting division by Osram GmbH....
with either their markings or Philco markings. - 6CS6 - Heptode with two sharp-cutoff control grids (1 and 3). Same basing as type 6BE6. Used as sync separator in television sets. Also: 3CS6, 4CS6, 12CS6.
- 6BY6 - Similar to type 6CS6, but with higher transconductance. Also: 3BY6.
- 12EG6 - Dual sharp-cutoff control grid mixer (grids 1 and 3). Has 12.6 volt plate and screen voltage. Designed for use with audio equipment powered by a car battery.