
List of formulas in Riemannian geometry
Encyclopedia
Christoffel symbols, covariant derivative
In a smooth coordinate chart, the Christoffel symbolsChristoffel symbols
In mathematics and physics, the Christoffel symbols, named for Elwin Bruno Christoffel , are numerical arrays of real numbers that describe, in coordinates, the effects of parallel transport in curved surfaces and, more generally, manifolds. As such, they are coordinate-space expressions for the...
are given by:

Here

Inverse
Inverse may refer to:* Inverse , a type of immediate inference from a conditional sentence* Inverse , a program for solving inverse and optimization problems...
matrix to the metric tensor


and thus

is the dimension of the manifold
Manifold
In mathematics , a manifold is a topological space that on a small enough scale resembles the Euclidean space of a specific dimension, called the dimension of the manifold....
.
Christoffel symbols satisfy the symmetry relation

which is equivalent to the torsion-freeness of the Levi-Civita connection
Levi-Civita connection
In Riemannian geometry, the Levi-Civita connection is a specific connection on the tangent bundle of a manifold. More specifically, it is the torsion-free metric connection, i.e., the torsion-free connection on the tangent bundle preserving a given Riemannian metric.The fundamental theorem of...
.
The contracting relations on the Christoffel symbols are given by

and

where |g| is the absolute value of the determinant
Determinant
In linear algebra, the determinant is a value associated with a square matrix. It can be computed from the entries of the matrix by a specific arithmetic expression, while other ways to determine its value exist as well...
of the metric tensor

The covariant derivative
Covariant derivative
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given...
of a vector field
Vector field
In vector calculus, a vector field is an assignmentof a vector to each point in a subset of Euclidean space. A vector field in the plane for instance can be visualized as an arrow, with a given magnitude and direction, attached to each point in the plane...
with components


and similarly the covariant derivative of a

Tensor field
In mathematics, physics and engineering, a tensor field assigns a tensor to each point of a mathematical space . Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical...
with components


For a

Tensor field
In mathematics, physics and engineering, a tensor field assigns a tensor to each point of a mathematical space . Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical...
with components


and likewise for tensors with more indices.
The covariant derivative of a function (scalar)


Because the Levi-Civita connection
Levi-Civita connection
In Riemannian geometry, the Levi-Civita connection is a specific connection on the tangent bundle of a manifold. More specifically, it is the torsion-free metric connection, i.e., the torsion-free connection on the tangent bundle preserving a given Riemannian metric.The fundamental theorem of...
is metric-compatible, the covariant derivatives of metrics vanish,

The geodesic
Geodesic
In mathematics, a geodesic is a generalization of the notion of a "straight line" to "curved spaces". In the presence of a Riemannian metric, geodesics are defined to be the shortest path between points in the space...



Riemann curvature tensor
If one defines the curvature operatorRiemann curvature tensor
In the mathematical field of differential geometry, the Riemann curvature tensor, or Riemann–Christoffel tensor after Bernhard Riemann and Elwin Bruno Christoffel, is the most standard way to express curvature of Riemannian manifolds...
as

and the coordinate components of the

Riemann curvature tensor
In the mathematical field of differential geometry, the Riemann curvature tensor, or Riemann–Christoffel tensor after Bernhard Riemann and Elwin Bruno Christoffel, is the most standard way to express curvature of Riemannian manifolds...
by


where n denotes the dimension of the manifold. Lowering indices with


The symmetries of the tensor are


That is, it is symmetric in the exchange of the first and last pair of indices, and antisymmetric in the flipping of a pair.
The cyclic permutation sum (sometimes called first Bianchi identity) is

The (second) Bianchi identity is

that is,

which amounts to a cyclic permutation sum of the last three indices, leaving the first two fixed.
Ricci and scalar curvatures
Ricci and scalar curvatures are contractions of the Riemann tensor. They simplify the Riemann tensor, but contain less information.The Ricci curvature
Ricci curvature
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, represents the amount by which the volume element of a geodesic ball in a curved Riemannian manifold deviates from that of the standard ball in Euclidean space...
tensor is essentially the unique nontrivial way of contracting the Riemann tensor:

The Ricci tensor

By the contracting relations on the Christoffel symbols, we have

The scalar curvature
Scalar curvature
In Riemannian geometry, the scalar curvature is the simplest curvature invariant of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the intrinsic geometry of the manifold near that point...
is the trace of the Ricci curvature,

The "gradient" of the scalar curvature follows from the Bianchi identity (proof):

that is,

Einstein tensor
The Einstein tensorEinstein tensor
In differential geometry, the Einstein tensor , named after Albert Einstein, is used to express the curvature of a Riemannian manifold...
Gab is defined in terms of the Ricci tensor Rab and the Ricci scalar R,

where g is the metric tensor.
The Einstein tensor is symmetric, with a vanishing divergence (proof) which is due to the Bianchi identity:

Weyl tensor
The Weyl tensorWeyl tensor
In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal force that a body feels when moving along a geodesic...
is given by

where

Gradient, divergence, Laplace–Beltrami operator
The gradient of a function


The divergence
Divergence
In vector calculus, divergence is a vector operator that measures the magnitude of a vector field's source or sink at a given point, in terms of a signed scalar. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around...
of a vector field with components


The Laplace–Beltrami operator acting on a function


The divergence of an antisymmetric tensor field of type


Kulkarni–Nomizu product
The Kulkarni–Nomizu product is an important tool for constructing new tensors from existing tensors on a Riemannian manifold. Let


Then we can multiply these in a sense to get a new covariant 4-tensor, which we denote


Often the Kulkarni–Nomizu product is denoted by a circle with a wedge that points up inside it. However, we will use


Let us use the Kulkarni–Nomizu product to define some curvature quantities.
Weyl tensor
The Weyl tensor

Each of the summands on the righthand side have remarkable properties. Recall the first (algebraic) Bianchi identity that a tensor


Not only the Riemann curvature tensor on the left, but also the three summands on the right satisfy this Bianchi identity. Furthermore, the first factor in the second summand has trace zero. The Weyl tensor is a symmetric product of alternating 2-forms,

just like the Riemann tensor. Moreover, taking the trace over any two indices gives zero,

In fact, any tensor that satisfies the first Bianchi identity can be written as a sum of three terms. The first, a scalar multiple of



The most remarkable property of the Weyl tensor, though, is that it vanishes (






This is essentially because

In an inertial frame
An orthonormal inertial frame is a coordinate chart such that, at the origin, one has the relations

In such a frame, the expression for several operators is simpler. Note that the formulae given below are valid at the origin of the frame only.

Under a conformal change
Let




is also a Riemannian metric on







Note that the difference between the Christoffel symbols of two different metrics always form the components of a tensor.

Here


Here




Beware that here the Laplacian


Thus the operator




If the dimension



We see that the (3,1) Weyl tensor is invariant under conformal changes.
Let






Conformally flat manifolds
WARNING: THE FORMULAS BELOW ARE UNCHECKED AND COULD VERY WELL BE WRONGThe setting where the metric takes the form

where



The Christoffel symbols are


for



In this setting, the Ricci tensor takes the form


for


