Linear connection
Encyclopedia
In the mathematical field of differential geometry, the term linear connection can refer to either of the following overlapping concepts:
  • a connection on a vector bundle
    Connection (vector bundle)
    In mathematics, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. If the fiber bundle is a vector bundle, then the notion of parallel transport is required to be linear...

    , often viewed as a differential operator (a Koszul connection or covariant derivative
    Covariant derivative
    In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given...

    );
  • a principal connection
    Connection (principal bundle)
    In mathematics, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points...

     on the frame bundle
    Frame bundle
    In mathematics, a frame bundle is a principal fiber bundle F associated to any vector bundle E. The fiber of F over a point x is the set of all ordered bases, or frames, for Ex...

     of a manifold or the induced connection on any associated bundle
    Associated bundle
    In mathematics, the theory of fiber bundles with a structure group G allows an operation of creating an associated bundle, in which the typical fiber of a bundle changes from F_1 to F_2, which are both topological spaces with a group action of G...

     — such a connection is equivalently given by a Cartan connection
    Cartan connection
    In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the...

     for the affine group
    Affine group
    In mathematics, the affine group or general affine group of any affine space over a field K is the group of all invertible affine transformations from the space into itself.It is a Lie group if K is the real or complex field or quaternions....

     of affine space
    Affine space
    In mathematics, an affine space is a geometric structure that generalizes the affine properties of Euclidean space. In an affine space, one can subtract points to get vectors, or add a vector to a point to get another point, but one cannot add points. In particular, there is no distinguished point...

    , and is often called an affine connection
    Affine connection
    In the branch of mathematics called differential geometry, an affine connection is a geometrical object on a smooth manifold which connects nearby tangent spaces, and so permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space...

    .


The two meanings overlap, for example, in the notion of a linear connection on the tangent bundle
Tangent bundle
In differential geometry, the tangent bundle of a differentiable manifold M is the disjoint unionThe disjoint union assures that for any two points x1 and x2 of manifold M the tangent spaces T1 and T2 have no common vector...

 of a manifold.

In older literature, the term linear connection is occasionally used for an Ehresmann connection
Ehresmann connection
In differential geometry, an Ehresmann connection is a version of the notion of a connection, which makes sense on any smooth fibre bundle...

 or Cartan connection
Cartan connection
In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the...

 on an arbitrary fiber bundle, to emphasise that these connections are "linear in the horizontal direction" (i.e., the horizontal bundle
Horizontal bundle
In mathematics, in the field of differential topology, givena smooth fiber bundle over a smooth manifold M, then the vertical bundle VE of E is the subbundle of the tangent bundle TE consisting of the vectors which are tangent to the fibers of E over M...

 is a vector subbundle of the tangent bundle of the fiber bundle), even if they are not "linear in the vertical (fiber) direction". However, connections which are not linear in this sense have received little attention outside the study of spray structures
Spray (mathematics)
In differential geometry, a spray is a vector field H on the tangent bundle TM that encodes a quasilinear second order system of ordinary differential equations on the base manifold M. Usually a spray is required to be homogeneous in the sense that its integral curves t→ΦHt∈TM obey the rule...

 and Finsler geometry.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK