Immunomics
Encyclopedia
Immunomics is the study of immune system
Immune system
An immune system is a system of biological structures and processes within an organism that protects against disease by identifying and killing pathogens and tumor cells. It detects a wide variety of agents, from viruses to parasitic worms, and needs to distinguish them from the organism's own...

 regulation and response to pathogens using genome-wide approaches. With the rise of genomic and proteomic technologies, scientists have been able to visualize biological networks and infer interrelationships between genes and/or proteins; recently, these technologies have been used to help better understand how the immune system functions and how it is regulated. Two thirds of the genome is active in one or more immune cell types and less than 1% of genes are uniquely expressed in a given type of cell. Therefore, it is critical that the expression patterns of these immune cell types be deciphered in the context of a network, and not as an individual, so that their roles be correctly characterized and related to one another. Defects of the immune system such as autoimmune diseases, immunodeficiency
Immunodeficiency
Immunodeficiency is a state in which the immune system's ability to fight infectious disease is compromised or entirely absent. Immunodeficiency may also decrease cancer immunosurveillance. Most cases of immunodeficiency are acquired but some people are born with defects in their immune system,...

, and malignancies can benefit from genomic insights on pathological processes. For example, analyzing the systematic variation of gene expression can relate these patterns with specific diseases and gene networks important for immune functions.

Traditionally, scientists studying the immune system have had to search for antigens on an individual basis and identify the protein sequence of these antigens (“epitopes”) that would stimulate an immune response. This procedure required that antigens be isolated from whole cells, digested into smaller fragments, and tested against T- and B-cells to observe T- and B- cell responses. These classical approaches could only visualize this system as static condition and required a large about of time and labor.

Immunomics has made this approach easier by its ability to look at the immune system as a whole and characterize it as a dynamic model. It has revealed that some of the immune system’s most distinguishing features are the continuous motility, turnover, and plasticity of its constituent cells. In addition, current genomic technologies, like microarrays, can capture immune system gene expression over time and can trace interactions of microorganisms with cells of the innate immune system
Innate immune system
The innate immune system, also known as non-specific immune system and secondary line of defence, comprises the cells and mechanisms that defend the host from infection by other organisms in a non-specific manner...

. New, proteomic approaches, including T-cell and B-cells-epitope mapping
Epitope mapping
Epitope mapping is the process of identifying the binding sites, or ‘epitopes’, of antibodies on their target antigens .Identification and characterization of the binding sites of antibodies can aid in the discovery and development of new therapeutics, vaccines, and diagnostics.Epitopes can be...

, can also accelerate the pace at which scientists discover antibody-antigen relationships.

Defining the Immunome

A host’s immune system responds to pathogen invasion by a set of pathogen-specific responses in which many “players” participate; these include antibodies, T-helper cells, cytotoxic T-cells, and many others. Antigen-presenting cells (APC) are capable of internalizing pathogens and displaying a fragment of the antigen – the epitope
Epitope
An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that recognizes the epitope is called a paratope...

 - with major histocompatibility complex
Major histocompatibility complex
Major histocompatibility complex is a cell surface molecule encoded by a large gene family in all vertebrates. MHC molecules mediate interactions of leukocytes, also called white blood cells , which are immune cells, with other leukocytes or body cells...

es (MHCs) on the cell surface. T-cell response is initiated when T-cells recognize these displayed epitopes. Only specific peptide sequences from some pathogen-specific antigens are needed to stimulate T- and B- cell responses; that is, the whole pathogenic peptide sequence is not necessary to initiate an immune response. The ‘immunome’ of a pathogen is described by its set of epitopes, and can be defined by comparing genome sequences and applying immunoinformatic tools.

Foundational Studies in Immunomics

Alizadeh et al. were some of the first to recognize the potential of cDNA microarrays to define gene expression of immune cells. Their analysis probed gene expression of human B and T lymphocytes during cellular activation and/or stimulation with cytokines, a type of signaling regulatory molecule. Many of the activated genes in stimulated T lymphocytes were known to be involved in the G0/G1 cell cycle
Cell cycle
The cell cycle, or cell-division cycle, is the series of events that takes place in a cell leading to its division and duplication . In cells without a nucleus , the cell cycle occurs via a process termed binary fission...

 transition or encoding for chemokines, signaling molecules involved in inflammatory response. This team was also able to visualize temporal patterns of gene expression during T cell mitogenesis. In the concluding paragraphs of their landmark paper, these scientists state “virtually every corner of immunological research will benefit from cDNA microarray analysis of gene expression,” and, thus, heralded the rise of immunomics.

Limited by available microarrays and a non-complete human genome at this point in time, this same set of researchers were motivated to create a specialized microarray that focused on genes preferentially expressed in a given cell type, or known to be functionally important in a given biological process. As a result, they designed the “Lymphochip” cDNA microarray, which contained 13,000 genes and was enriched for genes of importance to the immune system.

Iyer et al.’s 1999 article was another to reveal the importance of applying genomic technologies to immunological research. Although not intending to address any aspect of immunity at the start of their experiment, these researchers observed that the expression profiles of serum
Serum
Serum may refer to:*Blood serum, a component of blood which is collected after coagulation.**Antiserum, blood serum with specific antibodies for passive immunity*Serous fluid, any clear bodily fluid*any drug derived from an animal's blood or serous fluid...

-stimulated fibroblasts were far richer than anticipated and suggested an important physiological role of fibroblasts in healing wounds. The serum-induced genes have been associated with processes relevant to wound healing, including genes directly involved in remodeling the clot and extracellular matrix, as well as genes encoding signal proteins for inflammation, the development of new blood vessels, and regrowth of epithelial tissue. Additionally, one of the most significant results of this expression analysis was the discovery of more than 200 previously unknown genes whose expression was temporally regulated during the response of fibroblasts to serum. These results revealed the importance of viewing immune response as a collaborative physiological program and begged for further study of the immune system as a network, and not just individual pieces.

In 2006, Moutaftsi et al. demonstrated that epitope-mapping tools could accurately identify the epitopes responsible for 95% of the murine T-cell response to vaccinia virus. Through their work, these scientists introduced the interdisciplinary realm of informatics and immunology while employing genomic, proteomic, and immunological data. The striking success and ease of this method encouraged researchers both to define the immunome of other pathogens, and to measure the breadth and overlap of pathogen immunomes that give rise to immunity. Additionally, it suggested other applications in which epitope-mapping tools could be used including autoimmunity, transplantation, and immunogenicity
Immunogenicity
Immunogenicity is the ability of a particular substance, such as an antigen or epitope, to provoke an immune response in the body of a human or animal.- Immunogenicity :The ability to induce humoral and/or cell-mediated immune responses....

.

Immunomic microarrays

Several types of microarrays have been created to specifically observe immune system response and interactions. Antibody microarrays use antibodies as probes and antigens as targets. They can be used to directly measure the antigen concentrations for which the antibody probes are specific. Peptide microarrays use antigen peptides as probes and serum antibodies as targets. These can be used for functional immunomic applications to the understanding of autoimmune diseases and allergies, definition of B-cell epitopes, vaccine studies, detection assays, and analysis of antibody specificity. MHC microarrays are the most recent development in immunomic arrays and use peptide-MHC complexes and their co-stimulatory molecules as probes and T-cell populations as targets. Bound T-cells are activated and secrete cytokines, which are captured by specific detection antibodies. This microarray can map MHC-restricted T cell epitopes.

Lymphochip

The Lymphochip is a specialized human cDNA microarray enriched for genes related to immune function. 17,853 cDNA clones were taken from three sources. The first set of clones were selected if identified expressed sequence tags (ESTs) were unique or enriched specifically in lymphoid cDNA libraries; these represent ~80% of the Lymphochip clones. The second set of clones was identified during first-generation microarray analysis of immune responses. Finally, 3,183 genes that are known or suspected to have roles in immune function, oncogenesis, apoptosis
Apoptosis
Apoptosis is the process of programmed cell death that may occur in multicellular organisms. Biochemical events lead to characteristic cell changes and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA fragmentation...

, cell proliferation, or being open reading frames from pathogenic human viruses were used on the Lymphochip. New genes are frequently being added.

T-cell- and- B-cell-epitope mapping tools

Epitope mapping
Epitope mapping
Epitope mapping is the process of identifying the binding sites, or ‘epitopes’, of antibodies on their target antigens .Identification and characterization of the binding sites of antibodies can aid in the discovery and development of new therapeutics, vaccines, and diagnostics.Epitopes can be...

 identifies the sites of antibodies to which their target antigens bind. In the past, scientists would have to isolate antigens, digest them into smaller fragments, and determine which of these fragments stimulated T- and B- cell responses to define an antibody’s epitope. Immunomics harnesses the power of bioinformatics and offers mapping algorithms that accelerate the discovery of epitope sequences. These algorithms are relevant to vaccine design and for characterizing and modifying immune responses in the context of autoimmunity
Autoimmunity
Autoimmunity is the failure of an organism to recognize its own constituent parts as self, which allows an immune response against its own cells and tissues. Any disease that results from such an aberrant immune response is termed an autoimmune disease...

, endocrinology
Endocrinology
Endocrinology is a branch of biology and medicine dealing with the endocrine system, its diseases, and its specific secretions called hormones, the integration of developmental events such as proliferation, growth, and differentiation and the coordination of...

, allergy
Allergy
An Allergy is a hypersensitivity disorder of the immune system. Allergic reactions occur when a person's immune system reacts to normally harmless substances in the environment. A substance that causes a reaction is called an allergen. These reactions are acquired, predictable, and rapid...

, transplantation, diagnostics and engineering of therapeutic proteins.

T-cell and B-cell epitope mapping algorithms can computationally predict epitopes based on the genomic sequence of pathogens, without prior knowledge of a protein’s structure or function. A series of steps are used to identify epitopes:
  1. Comparison between virulent and avirulent organisms identify candidate genes that code for epitopes that solicit T-cell responses by looking for sequences that are unique to virulent strains. Additionally, differential microarray technologies can discover pathogen-specific genes that are upregulated during host-interaction and may be relevant for analysis because they are critical to the function of the pathogen.
  2. Immunoinformatics tools predict regions of these candidate genes that interact with T cells by scanning genome-derived protein sequences of a pathogen.
  3. These predicted peptides are synthesized and used in in vitro screening against T cells. Recognizing a positive immune response can suggest that this peptide contains an epitope that stimulates immune response in the course of natural infection or disease.

Epitope Mapping Tools available

  • EpiMatrix
  • TEPITOPE
  • Multipred
  • MHC Thread
  • MHCPred
  • NetMHC
  • LpPep
  • BIMAS

Tetramer staining by flow cytometry

The guiding principle behind flow cytometry
Flow cytometry
Flow cytometry is a technique for counting and examining microscopic particles, such as cells and chromosomes, by suspending them in a stream of fluid and passing them by an electronic detection apparatus. It allows simultaneous multiparametric analysis of the physical and/or chemical...

 is that cells or subcellular particles are tagged with fluorescent probes are passed through a laser beam and sorted by the strength of fluorescence emitted by cells contained in the droplets. MHC tetramer staining by flow cytometry identifies and isolates specific T cells based on the binding specificity of their cell surface receptors with fluorescently-tagged MHC-peptide complexes.

ELISPOT

ELISPOT
ELISPOT
The Enzyme-linked immunosorbent spot assay is a common method for monitoring immune responses in humans and animals. It was developed by Cecil Czerkinsky in 1983....

 is a modified version of the ELISA
ELISA
Enzyme-linked immunosorbent assay , is a popular format of a "wet-lab" type analytic biochemistry assay that uses one sub-type of heterogeneous, solid-phase enzyme immunoassay to detect the presence of a substance in a liquid sample."Wet lab" analytic biochemistry assays involves detection of an...

 immunoassay and is a common method of monitoring immune responses.

Immunomic Contributions to Understanding the Immune System

Immunomics has made a considerable impact on the understanding of the immune system by uncovering differences in gene expression profiles of cell types, characterizing immune response, illuminating immune cell lineages and relationship, and establishing gene regulatory networks. Whereas the following list of contributions is not complete, it is meant to demonstrate the broad application of immunomic research and powerful consequences on immunology.

B lymphocyte activation or anergy

Microarrays have discovered gene expression patterns that correlate with antigen-induced activation or anergy in B lymphocytes. Lymphocyte anergy pathways involve induction of some, but not all of the signaling pathways used during lymphocyte activation. For example, NFAT
NFAT
Nuclear factor of activated T-cells is a general name applied to a family of transcription factors shown to be important in immune response. One or more members of the NFAT family is expressed in most cells of the immune system...

 and MAPK/ERK kinase pathways are expressed in anergic (or “tolerant) cell lines, whereas NF-kB
NF-kB
NF-κB is a protein complex that controls the transcription of DNA. NF-κB is found in almost all animal cell types and is involved in cellular responses to stimuli such as stress, cytokines, free radicals, ultraviolet irradiation, oxidized LDL, and bacterial or viral antigens...

 and c-Jun N-terminal kinases
C-Jun N-terminal kinases
c-Jun N-terminal kinases , were originally identified as kinases that bind and phosphorylate c-Jun on Ser-63 and Ser-73 within its transcriptional activation domain. They belong to the mitogen-activated protein kinase family, and are responsive to stress stimuli, such as cytokines, ultraviolet...

 pathways are not. Of the 300 genes that were altered in expression after antigen-stimulated naïve B cells, only 8 of these genes were regulated in tolerant B cells. Understanding these “tolerance” pathways have important implications for designing immunosuppressive drugs. These gene expression signatures of tolerant B cells could be used during drug screens to probe for compounds that mimic the functional effects of natural tolerance.

Lymphocyte Differentiation

Gene expression profiles during human lymphocyte
Lymphocyte
A lymphocyte is a type of white blood cell in the vertebrate immune system.Under the microscope, lymphocytes can be divided into large lymphocytes and small lymphocytes. Large granular lymphocytes include natural killer cells...

 differentiation has followed mature, naïve B cells from their resting state through germinal center
Germinal center
Germinal centers are sites within lymph nodes where mature B lymphocytes rapidly proliferate, differentiate, mutate their antibodies , and class switch their antibodies during a normal immune response to an infection...

 reactions and into terminal differentiation. These studies have shown that germinal center B cells represent a distinct stage in differentiation because the gene expression profile is different than activated peripheral B cells. Although no in vitro culture system has been able to induce resting peripheral B cells to adopt a full germinal center phenotype, these gene expression profiles can be used to measure the success of in vitro cultures in mimicking the germinal center state as they are being developed.

Lymphoid Malignancies

About 9 of every 10 human lymphoid cancers derive from B cells. Distinct immunome-wide expression patterns in a large number of diffuse large cell lymphoma (DLCL)– the most common form of non-Hodgkin’s lymphoma – have identified at least two different subtypes in what was previously thought to be a single disease. One subset of these DLCLs shows a similar gene expression pattern to that of normal germinal center B cells and implies that the tumor cell originated from a germinal center B cell. Other surveys of B cell malignancies show that follicular lymphomas share expression features with germinal center B cells, whereas chronic lymphocytic leukemia cells resemble resting peripheral blood lymphocytes. Furthermore, heterogeneity in each of these cell lines also suggest that different subtypes exist within each type of lymphoma, just as it has been shown in DLCL. Such knowledge can be used to direct patients to the most appropriate therapy.

Macrophage responses to bacteria

Microarrays have analyzed global responses of macrophages to different microorganisms and have confirmed that these responses sustain and control inflammatory processes, and also kill microorganisms. These independent studies have been able to better describe how macrophages mount attacks against different microorganisms. A “core transcriptional response” was observed to induce 132 genes and repress 59 genes. Induced genes include pro-inflammatory chemokines and cytokines, and their respective receptors. A “pathogen-specific response” was also observed.

Dendritic response to pathogen

Dendritic cells (DCs) help macrophages sustain inflammatory processes and participate in the innate immune system
Innate immune system
The innate immune system, also known as non-specific immune system and secondary line of defence, comprises the cells and mechanisms that defend the host from infection by other organisms in a non-specific manner...

 response, but can also prime adaptive immunity. Gene expression analyses have shown that DCs can “multi-task” by temporally segregating their different functions. Soon after recognizing an infectious agent, immature DCs transition to a state of early activation via a core response characterized by rapid downregulation of genes involved with pathogen recognition and phagocytosis, upregulation of cytokine and chemokine genes to recruit other immune cells to the side of inflammations; and expression of genes that control migratory capacity. Early activated DCs are enabled to migrate from non-lymphoid tissues to lymph nodes, where they can prime T-cell responses. These early DCs responses are related to innate immunity and comprise of the “core transcriptional response” of DCs. Pathogen-specific responses have a stronger influence on the DC’s ability to regulate adaptive immunity.

Distinguishing Immune Cell Types, Lineages, and Relationships

Comparing distinctions between immune cells’ overall transcriptional program can generate plots that position each cell type to best reflect it’s expression profile relative to all other cells and can reveal interesting relationships between cell types. For example, the transcriptional profiles from thymic medullary epithelial immune cells mapped closer to lymphocytes than to other epithelia. This can suggest that a functional interaction exists between these two cells type and requires the sharing of particular transcripts and proteins. When comparing gene expression profiles from cells of the blood system, T-cell and B-cell subsets tightly group with their respective cell types.

By looking at the transcriptional profile of different T-cells, scientists have shown that natural killer T-cells are a close variant of conventional CD4+ T cells, rather than an intermediary cell-type between T cells and natural killer cells. Additionally, DCs, natural killer cells, and B cells are tightly grouped based of their global expression profiles. It may have been expected that B lymphocytes and T lymphocytes would cluster separately from each other, or that natural killer cells would be more closely related to T cells because they share common precursors, cytolytic activity, and similar activation markers. Therefore, immunomics has established relationship between cell lineages that depart from classical views. Additionally, it may better explain the observed plasticity in lymphoid and myeloid cell differentiation because of the considerable overlap between global expression profiles of these different lineages.

Establishing Regulatory Networks in Immune Cells

Networks represent the broadest level of genetic interactions and aim to link all genes and transcripts in the immunological genome. Cellular phenotypes and differentiation states are ultimately established by the activity of these networks of co-regulated genes. One of the most complete networks in immunology has deciphered regulatory connections among normal and transformed human B cells. This analysis suggests a hierarchical network where a small number of highly connected genes (called “hubs”) regulated most interactions. Proto-oncogene
Oncogene
An oncogene is a gene that has the potential to cause cancer. In tumor cells, they are often mutated or expressed at high levels.An oncogene is a gene found in the chromosomes of tumor cells whose activation is associated with the initial and continuing conversion of normal cells into cancer...

 MYC
Myc
Myc is a regulator gene that codes for a transcription factor. In the human genome, Myc is located on chromosome 8 and is believed to regulate expression of 15% of all genes through binding on Enhancer Box sequences and recruiting histone acetyltransferases...

 emerged as a major hub and highly influential regulator for B cells. Notably, MYC was found to directly control BYSL
BYSL
Bystin is a protein that in humans is encoded by the BYSL gene.-Further reading:...

, a highly conserved, but poorly characterized gene, and is the largest hub in the whole B cell network. This suggests that BYSL encodes an important cellular molecule and a critical effecter of MYC function, and motivates additional studies to elucidate its function. Therefore, using gene expression data to create networks can reveal genes highly influential in immune cell differentiation that pre-genomic technologies had not yet identified.

Vaccine development

As quoted by Stefania Bambini and Rino Rappuoli, “New powerful genomics technologies have increased the number of disease that can be addressed by vaccination, and decreased the time for discover research and vaccine
Vaccine
A vaccine is a biological preparation that improves immunity to a particular disease. A vaccine typically contains an agent that resembles a disease-causing microorganism, and is often made from weakened or killed forms of the microbe or its toxins...

 development.” The availability of complete genome sequences of pathogens in combination with high-throughput genomics technologies have helped to accelerate vaccine development. Reverse vaccinology uses genomic sequences of viral, bacterial, or parasitic pathogens to identify genes potentially encoding genes that promote pathogenesis
Pathogenesis
The pathogenesis of a disease is the mechanism by which the disease is caused. The term can also be used to describe the origin and development of the disease and whether it is acute, chronic or recurrent...

.
The first application of reverse vaccinology identified vaccine candidates against Neisseria meningitidis serogroup B. Computational tools identified 600 putative surface-exposed or secreted proteins from the complete genome sequence of a MenB pathogenic strain, on the basis of sequence features. These putative proteins were expressed in E. coli, purified, and used to immunize mice. Tests using mice immune sera estimated the ability of antibodies to protect against these proteins. The proteins able to solicit a robust immune response were checked for sequence conservation across a panel of meningitides strains and allowed for further selection of antigen able to elicit an immune response against most strains in the panel. On the basis of these antigen sequences, scientists have been able to develop a universal “cocktail” vaccine against Neisseria meninitidis that uses five antigens to promote immunity.
Similar approaches have been used for a variety of other human pathogens, such as Streptococcus pneumoniae
Streptococcus pneumoniae
Streptococcus pneumoniae, or pneumococcus, is Gram-positive, alpha-hemolytic, aerotolerant anaerobic member of the genus Streptococcus. A significant human pathogenic bacterium, S...

, Chlamydia pneumoniae, Bacillus anthracis
Bacillus anthracis
Bacillus anthracis is the pathogen of the Anthrax acute disease. It is a Gram-positive, spore-forming, rod-shaped bacterium, with a width of 1-1.2µm and a length of 3-5µm. It can be grown in an ordinary nutrient medium under aerobic or anaerobic conditions.It is one of few bacteria known to...

, Porphyromonas gingivalis
Porphyromonas gingivalis
Porphyromonas gingivalis belongs to the phylum Bacteroidetes and is a non-motile, gram-negative, rod-shaped, anaerobic pathogenic bacterium. It forms black colonies on blood agar....

, Mycobacterium tuberculosis
Mycobacterium tuberculosis
Mycobacterium tuberculosis is a pathogenic bacterial species in the genus Mycobacterium and the causative agent of most cases of tuberculosis . First discovered in 1882 by Robert Koch, M...

, Helicobacter pylori
Helicobacter pylori
Helicobacter pylori , previously named Campylobacter pyloridis, is a Gram-negative, microaerophilic bacterium found in the stomach. It was identified in 1982 by Barry Marshall and Robin Warren, who found that it was present in patients with chronic gastritis and gastric ulcers, conditions that were...

, amongst others. Additionally, studies have started for the development of vaccines against viruses.

Diagnosing and Predicting Disease

The inventory of receptors and signal transduction pathways that immune cells use to monitor and defend the body gives rise to signature patterns of altered gene expression in peripheral blood cells that reflect the character of the infection or injury. Therefore, recognizing characteristic expression profiles of peripheral blood cells may be a powerful diagnostic tool by recruiting these cells as “spies” to detect occult diseases or agents that cannot be readily cultured from the host.

For example, cytomegalovirus
Cytomegalovirus
Cytomegalovirus is a viral genus of the viral group known as Herpesviridae or herpesviruses. It is typically abbreviated as CMV: The species that infects humans is commonly known as human CMV or human herpesvirus-5 , and is the most studied of all cytomegaloviruses...

 (CMV) infection of fibroblasts and HTLV-I infection of T lymphocytes revealed distinct gene expression profiles. CMV infection provoked a unique interferon response whereas HTLV-1 infection induced NF-kB target genes. A type of white blood cells have also been tested again bacterial exposures and immunome expression varied based on the type of bacterial strain used.

Monitoring the change of peripheral blood gene expression can also help determine the course of infection and help treat patients with a therapy tailored to their disease stage. This approach has already been used against sepsis – a disease that progresses through a predictable line of events.
Changes gene expression signatures may precede clinical exacerbation of symptoms, like in multiple sclerosis
Multiple sclerosis
Multiple sclerosis is an inflammatory disease in which the fatty myelin sheaths around the axons of the brain and spinal cord are damaged, leading to demyelination and scarring as well as a broad spectrum of signs and symptoms...

, and allow physicians to nip these “flare-ups” in the bud.

The Immunological Genome Project

The immune system is a network of genetic and signaling pathways connected by a network of interacting cells. The Immunological Genome Project seeks to generate a complete compendium of protein-coding gene expression for all cell populations in the mouse immune system. It analyzes both steady-state conditions within different cell populations, and in response to genetic and/or environmental perturbations created by natural genetic polymorphism, gene knock-out, gene knock-down by RNAi
RNAI
RNAI is a non-coding RNA that is an antisense repressor of the replication of some E. coli plasmids, including ColE1. Plasmid replication is usually initiated by RNAII, which acts as a primer by binding to its template DNA. The complementary RNAI binds RNAII prohibiting it from its initiation role...

, or drug treatment. Computational tools to reverse-engineer or predict immune cell regulatory networks use these expression profiles.

By 2008, the ImmGen project involved seven immunology and three computational biology laboratories across the United States and over 200 cell populations involved in the immune system had been identified and described. This consortium has created a data browser to explore the expression patterns of particular genes, networks of co-regulated genes, and genes that can reliably distinguish cell types. Raw data is also accessible from the NCBI’s Gene Expression Omnibus.,

Immunomic Databases

  • Immune Response in silico (IRIS)
  • Reference Database of Immune Cells
  • Immunological Genome Project
  • Immune Epitope Database and Analysis Resource (IEDB)
  • IMGT
  • SYFPEiTHi
  • AniJen
  • MHCBN
  • IPD
  • Epitome
  • Allergome
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK