Hyperfunction
Encyclopedia
In mathematics
, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function
to another at a boundary, and can be thought of informally as distribution
s of infinite order. Hyperfunctions were introduced by Mikio Sato
in 1958, building upon earlier work by Grothendieck
and others.
Informally, the hyperfunction is what the difference f − g would be at the real line itself. This difference is not affected by adding the same holomorphic function to both f and g, so if h is a holomorphic function on the whole complex plane
, the hyperfunctions (f, g) and (f + h, g + h) are defined to be equivalent.
. Let be the sheaf
of holomorphic function
s on C. Define the hyperfunctions on the real line
by
the first local cohomology
group.
Concretely, let C+ and C−
be the upper half-plane and lower half-plane respectively. Then
so
Since the zeroth cohomology group of any sheaf is simply the global sections of that sheaf, we see that a hyperfunction is a pair of holomorphic functions one each on the upper and lower complex halfplane modulo entire holomorphic functions.
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...
, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function
Holomorphic function
In mathematics, holomorphic functions are the central objects of study in complex analysis. A holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighborhood of every point in its domain...
to another at a boundary, and can be thought of informally as distribution
Distribution (mathematics)
In mathematical analysis, distributions are objects that generalize functions. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative...
s of infinite order. Hyperfunctions were introduced by Mikio Sato
Mikio Sato
is a Japanese mathematician, who started the field of algebraic analysis. He studied at the University of Tokyo, and then did graduate study in physics as a student of Shin'ichiro Tomonaga...
in 1958, building upon earlier work by Grothendieck
Alexander Grothendieck
Alexander Grothendieck is a mathematician and the central figure behind the creation of the modern theory of algebraic geometry. His research program vastly extended the scope of the field, incorporating major elements of commutative algebra, homological algebra, sheaf theory, and category theory...
and others.
Formulation
A hyperfunction on the real line can be conceived of as the 'difference' between one holomorphic function on the upper half-plane and another on the lower half-plane. That is, a hyperfunction is specified by a pair (f, g), where f is a holomorphic function on the upper half-plane and g is a holomorphic function on the lower half-plane.Informally, the hyperfunction is what the difference f − g would be at the real line itself. This difference is not affected by adding the same holomorphic function to both f and g, so if h is a holomorphic function on the whole complex plane
Complex plane
In mathematics, the complex plane or z-plane is a geometric representation of the complex numbers established by the real axis and the orthogonal imaginary axis...
, the hyperfunctions (f, g) and (f + h, g + h) are defined to be equivalent.
Definition in one dimension
The motivation can be concretely implemented using ideas from sheaf cohomologySheaf cohomology
In mathematics, sheaf cohomology is the aspect of sheaf theory, concerned with sheaves of abelian groups, that applies homological algebra to make possible effective calculation of the global sections of a sheaf F...
. Let be the sheaf
Sheaf (mathematics)
In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. The data can be restricted to smaller open sets, and the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of...
of holomorphic function
Holomorphic function
In mathematics, holomorphic functions are the central objects of study in complex analysis. A holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighborhood of every point in its domain...
s on C. Define the hyperfunctions on the real line
Real line
In mathematics, the real line, or real number line is the line whose points are the real numbers. That is, the real line is the set of all real numbers, viewed as a geometric space, namely the Euclidean space of dimension one...
by
the first local cohomology
Local cohomology
In mathematics, local cohomology is a chapter of homological algebra and sheaf theory introduced into algebraic geometry by Alexander Grothendieck. He developed it in seminars in 1961 at Harvard University, and 1961-2 at IHES. It was later written up as SGA2...
group.
Concretely, let C+ and C−
be the upper half-plane and lower half-plane respectively. Then
so
Since the zeroth cohomology group of any sheaf is simply the global sections of that sheaf, we see that a hyperfunction is a pair of holomorphic functions one each on the upper and lower complex halfplane modulo entire holomorphic functions.
Examples
- If f is any holomorphic function on the whole complex plane, then the restriction of f to the real axis is a hyperfunction, represented by either (f, 0) or (0, −f).
- The Heaviside step functionHeaviside step functionThe Heaviside step function, or the unit step function, usually denoted by H , is a discontinuous function whose value is zero for negative argument and one for positive argument....
can be represented as .
- The Dirac delta "function"Dirac delta functionThe Dirac delta function, or δ function, is a generalized function depending on a real parameter such that it is zero for all values of the parameter except when the parameter is zero, and its integral over the parameter from −∞ to ∞ is equal to one. It was introduced by theoretical...
is represented by . This is really a restatement of Cauchy's integral formulaCauchy's integral formulaIn mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all...
. To verify it one can calculate the integration of f just below the real line, and subtract integration of g just above the real line - both from left to right. Note that the hyperfunction can be non-trivial, even if the components are analytic continuation of the same function. Also this can be easily checked by differentiating the Heaviside function.
- If g is a continuous functionContinuous functionIn mathematics, a continuous function is a function for which, intuitively, "small" changes in the input result in "small" changes in the output. Otherwise, a function is said to be "discontinuous". A continuous function with a continuous inverse function is called "bicontinuous".Continuity of...
(or more generally a distribution) on the real line with support contained in a bounded interval I, then g corresponds to the hyperfunction (f, −f), where f is a holomorphic function on the complement of I defined by
- This function f jumps in value by g(x) when crossing the real axis at the point x. The formula for f follows from the previous example by writing g as the convolutionConvolutionIn mathematics and, in particular, functional analysis, convolution is a mathematical operation on two functions f and g, producing a third function that is typically viewed as a modified version of one of the original functions. Convolution is similar to cross-correlation...
of itself with the Dirac delta function.
- If f is any function that is holomorphic everywhere except for an essential singularityEssential singularityIn complex analysis, an essential singularity of a function is a "severe" singularity near which the function exhibits extreme behavior.The category essential singularity is a "left-over" or default group of singularities that are especially unmanageable: by definition they fit into neither of the...
at 0 (for example, e1/z), then (f, −f) is a hyperfunction with support 0 that is not a distribution. If f has a pole of finite order at 0 then (f, −f) is a distribution, so when f has an essential singularity then (f,−f) looks like a "distribution of infinite order" at 0. (Note that distributions always have finite order at any point.)