Honda advanced technology
Encyclopedia
Honda
Honda
is a Japanese public multinational corporation primarily known as a manufacturer of automobiles and motorcycles.Honda has been the world's largest motorcycle manufacturer since 1959, as well as the world's largest manufacturer of internal combustion engines measured by volume, producing more than...

 Advanced Technology
is part of Honda’s long-standing research and development in building new models for their automotive products and automotive-related technologies, primarily on engine technology. Honda’s consistent habit in pursuing ideas and exploring technological challenges have led to practical solutions like fuel-efficient vehicles and engines, to more sophisticated applications like the humanoid robot
Humanoid robot
A humanoid robot or an anthropomorphic robot is a robot with its overall appearance, based on that of the human body, allowing interaction with made-for-human tools or environments. In general humanoid robots have a torso with a head, two arms and two legs, although some forms of humanoid robots...

, ASIMO, and the HondaJet, a six-passenger jet plane.
Honda Advanced Technology emphasizes on environmental sustainability, safety and advanced mobility.

Environmental Technology

Honda’s focus on fuel-efficiency and the environmental impact of its vehicles dates back to the Clean Air Legislation of the 1960s and 1970’s. “Blue skies for our children” has been their guideline in developing future vehicles, inspiring them to launch further research into clean diesels and hydrogen power. Advanced improvement on existing technologies like VTEC and IMA has resulted in i-VTEC and Hybrid Technology that increases fuel economy and further reduces CO2 emissions.

i-VTEC Technology

i-VTEC is the acronym for intelligent VTEC (Variable Valve Timing and Electronic Lift Control), an evolution of Honda’s VTEC
VTEC
VTEC is a valvetrain system developed by Honda to improve the volumetric efficiency of a four-stroke internal combustion engine. The VTEC system uses two camshaft profiles and electronically selects between the profiles. It was invented by Honda R&D engineer Ikuo Kajitani, and was the first system...

 engine. The i-VTEC engine works by controlling the timing and lifting of the camshaft
Camshaft
A camshaft is a shaft to which a cam is fastened or of which a cam forms an integral part.-History:An early cam was built into Hellenistic water-driven automata from the 3rd century BC. The camshaft was later described in Iraq by Al-Jazari in 1206. He employed it as part of his automata,...

s depending on engine speeds. The valves open smaller during low engine speeds to achieve maximum fuel efficiency. The valves will open bigger at higher engine speeds to achieve higher performance.

The new mechanism debuted in 2003 with the V6 3.0-liter i-VTEC engine which used a new Variable Cylinder Management
Variable Cylinder Management
Variable Cylinder Management is Honda's term for a variable displacement technology. It uses the i-VTEC system to disable one bank of cylinders during specific driving conditions to save fuel. The 2008 Accord takes this a step further allowing the engine to go from 6 cylinders, down to 4, and...

 (VCM) technology that runs on six cylinders during acceleration but used only three cylinders during cruising and low engine loads. In 2005, Honda introduced the 1.8-liter i-VTEC engine for the Civic which could deliver accelerated performance equivalent to a 2.0-liter engine with fuel efficiency that is 6% better than the 1.7-liter Civic engine. The high power output with low emissions and fuel economy is largely contributed by the improvements in several areas:
  • Delayed valve closure timing – This controls the intake volume of air-fuel mixture, allowing the throttle
    Throttle
    A throttle is the mechanism by which the flow of a fluid is managed by constriction or obstruction. An engine's power can be increased or decreased by the restriction of inlet gases , but usually decreased. The term throttle has come to refer, informally and incorrectly, to any mechanism by which...

     valve to remain wide open
    Wide open throttle
    Wide open throttle refers to an internal combustion engine's maximum intake of air and fuel that occurs when the throttle plates inside the carburettor or throttle body are "wide open", providing the least resistance to the incoming air...

     while reducing pumping losses of up to 16%, which allows the engine to deliver better power output.
  • Drive-by-wire technology – This system provides increased precision control over the throttle valve when the valve timing changes, creating a better driving experience where the driver is unaware of any torque fluctuations.
  • Restructured pistons – A more compact piston
    Piston
    A piston is a component of reciprocating engines, reciprocating pumps, gas compressors and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from...

     prevents residual gas accumulation which in turn suppresses engine knocking
    Engine knocking
    Knocking in spark-ignition internal combustion engines occurs when combustion of the air/fuel mixture in the cylinder starts off correctly in response to ignition by the spark plug, but one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front.The...

    . In addition, oil retention is improved thus reducing friction and increases fuel efficiency.
  • 2-bed catalytic converter
    Catalytic converter
    A catalytic converter is a device used to convert toxic exhaust emissions from an internal combustion engine into non-toxic substances. Inside a catalytic converter, a catalyst stimulates a chemical reaction in which noxious byproducts of combustion are converted to less toxic substances by dint...

     – This is positioned immediately after the exhaust manifold, providing direct contact which allows for high-precision air-fuel ratio
    Air-fuel ratio
    Air–fuel ratio is the mass ratio of air to fuel present in an internal combustion engine. If exactly enough air is provided to completely burn all of the fuel, the ratio is known as the stoichiometric mixture, often abbreviated to stoich...

     control to drastically reduce emission levels.
  • Reduced engine weight – The mass of the connecting rods and overall materials used in the building the engine frame is reduced, which helps the engine gain better power and fuel efficiency.


The i-VTEC technology is also integrated in Honda’s hybrid vehicle
Hybrid vehicle
A hybrid vehicle is a vehicle that uses two or more distinct power sources to move the vehicle. The term most commonly refers to hybrid electric vehicles , which combine an internal combustion engine and one or more electric motors.-Power:...

s to work in tandem with an electric motor
Electric motor
An electric motor converts electrical energy into mechanical energy.Most electric motors operate through the interaction of magnetic fields and current-carrying conductors to generate force...

. In Honda’s 2006 Civic Hybrid, the 1.3-liter i-VTEC engine uses a 3-stage valve design, an advancement from the 2005 i-VTEC technology. Aside from weight and friction reduction, the engine operates on either low-speed timing, high-output timing or 4-cylinder idling when the VCM system is engaged, each yielding better engine output upon varying driving conditions. Its competency helped place the Honda Civic Hybrid as the third “Greenest Vehicle” in 2009.

Integrated Motor Assist

The Integrated Motor Assist, or IMA as it is commonly known, is Honda’s hybrid car technology that uses a gasoline-electric drive system developed to achieve higher fuel economy and low exhaust emissions without compromising engine efficiency. The IMA system uses the engine as the main power source and an electric motor as an assisting power during acceleration. It was first designed for the Honda Insight in 1999, which combined the electric motor with a smaller displacement VTEC engine and a lightweight aluminum body with improved aerodynamics. Low emissions target was realized when the car achieved the EU2000. In 2001, the Honda Insight Integrated Motor Assist system was declared “Best New Technology” by the Automobile Journalists Association of Canada (AJAC).

The development of the IMA system is a result of optimizing the various technologies that Honda has built over the years, including the lean-burn combustion, low-emission engines, variable valve timing, high-efficiency electric motors, regenerative braking, nickel-metal hydride (Ni-MH) battery technology and the microprocessor control. The target of this integrated system was to meet improvements in several areas:
  • Recovery of deceleration energy

With the IMA system, the amount of energy regeneration during deceleration is optimized and friction is reduced. The recovered energy is used to supplement the engine’s output during acceleration.
  • Reduction of energy displacement

The IMA supports the engine during a low rpm normal driving range by utilizing the electric motor to generate a high-torque performance. When the gasoline engine enters a higher rpm range, the electric motor ceases and power output is supplied by the VTEC engine. The assistance from the electric motor reduces the work of the gasoline engine, allowing the engine to be downscaled. This results in better mileage and reduces fuel consumption.
  • Achieving lean burn engine operation

A key feature of the IMA is the improvement in combustion efficiency through lean burn technology which significantly reduces combustion times. A more compact combustion chamber and a higher compression ratio also improve heat efficiency in addition to higher air-fuel ratio. Motor assist is applied under moderate load condition to broaden the learn-burn operating range. This in turn improves the driving experience and fuel consumption.
  • Idle stop system

The power from the electric motor is generated and conserved when the vehicle moves forward.
When brakes are applied, the IMA system shuts off the engine and conserved power from the electric motor is utilized. This minimizes vibration of the car body and saves fuel when the engine is idling. When the brakes are released, the electric motor will restart the engine.

Among the Honda car models that are using IMA:


Honda J-VX (model 1997 concept car)

Honda Insight (model 1999-2006, 2010–present)

Honda Dualnote (model 2001 concept car)

Honda Civic Hybrid (model 2003)

Honda Accord Hybrid (model 2005-2007)

Safety

Honda operates two of the world’s most sophisticated crash test laboratories to improve safety designs and technologies in their vehicles, resulting in the cars scoring five-star ratings in front and side crash tests. A new independent crash test report from Euro NCAP also assessed the 2009 Honda Accord, Honda Civic and Honda Jazz as among Europe’s safest cars, with an overall five-star rating.

Honda approaches safety issues through a core feature of advanced safety technologies which are applied to virtually all models as standard equipments to prevent accidents. Active safety
Active safety
In engineering, active safety systems are systems activated in response to a safety problem or abnormal event. Such systems may be activated by a human operator, automatically by a computer driven system, or even mechanically...

 technology prevents uncontrollable steering during cornering on the road using the Vehicle Stability Assist (VSA) while passive safety technology protects passengers and pedestrian by dispersing force into the body frame of the vehicle in the event of a road mishap. This is known as the G-force control (G-CON).

Vehicle Stability Assist

The Vehicle Stability Assist (VSA) was introduced by Honda to its vehicles in 1997. The term is Honda’s version of Electronic Stability Control (ESC), an active safety feature developed to correct oversteer and understeer
Understeer
Understeer and oversteer are vehicle dynamics terms used to describe the sensitivity of a vehicle to steering. Simply put, oversteer is what occurs when a car turns by more than the amount commanded by the driver...

 by using several sensors to detect loss of steering control and traction while simultaneously breaking individual wheels to help the vehicle regain stability.

How VSA Works

VSA combines the Anti-lock Braking System (ABS) and Traction Control System (TCS) with side-slip control to help stabilize the vehicle whenever it turns more or less than desired. ABS is an existing system that prevents the vehicle’s wheels from locking up under braking, especially in slippery road conditions. For the ABS to work, the system relies on the computed input from a steering angle sensor to monitor the driver’s steering direction, the yaw sensor to detect the momentum of which the wheels are steering (yaw rate), and a lateral acceleration (g-force) sensor to signal the changes in speed. At the same time, the TCS will prevent wheel slip during acceleration while the side-slip control stabilizes cornering when the rear or front wheels slip sideways (during oversteer and understeer).

Controlling oversteer – During an oversteer, the rear end of the vehicle will spin out because the rotational speed of the rear wheels exceeds the front wheels. VSA will prevent the vehicle from spinning by braking the outer front wheel to produce an ouwtard moment and stabilize the vehicle.

Controlling understeer - During an understeer, the front wheels loses traction during cornering due to excessive throttle and causes the speed difference between the left and front wheels to decrease. When the vehicle steers outwards from the intended trajectory, VSA intervenes by reducing engine power and if necessary, also braking the inner front wheel

G-CON

Honda's G-CON technology aims to protect car occupants by controlling G-forces during a collision. Such collision safety is a result of specific impact absorption by the vehicle's body and frame. The technology is tested between vehicles of varied size and structure in Honda’s Real World Crash Test facility, at the Tochigi R&D Center, Japan. It is the world’s first indoor, all-weather, omni-directional, vehicle-to-vehicle crash test center, built to increase research in safety technologies that will help vehicles withstand real-world traffic accidents. The car bodies that Honda has developed with G-CON have passed Honda’s own demanding testing at the facility, withstanding a fixed barrier full frontal collision at 55 km/h and a frontal offset collision at 64 km/h.

How G-Con Works

The structure of the car body is designed to absorb and disperse crash energy throughout the energy compartment. When impact absorption is maximised, the cabin intrusion is automatically minimised to effectively lessen injuries to both occupants and pedestrians. The cabin floor forms a durable and firm foundation. The upperframe of the body structure absorbs the upper part of the collision impact while the lower part of the structure is engineered to prevent misalignment of the body frame of an oncoming car.

To optimize front collision performance and reduce the impact when different sized vehicles collide, the G-CON technology is further developed to incorporate Advanced Compatibility Engineering, Honda’s term for crash compatibility. Honda has announced that by 2009, the ACE will be a standard feature in all their passenger cars, regardless of size or price.

G-CON is also designed to improve pedestrian safety by minimizing head and chest injuries of the pedestrian during an accident. The company introduced an advanced test dummy, Polar III, which represents the human body and is equipped with sensors to measure the impact of energy on a human body during a car accident. The data obtained has been used to explore pedestrian safety by improving the design of the vehicles.

Advanced mobility

Honda also ventures into advanced mobility research where the findings were used to create ASIMO
ASIMO
is a humanoid robot created by Honda. Introduced in 2000, ASIMO, which is an acronym for "Advanced Step in Innovative MObility", was created to be a helper to people. With aspirations of helping people who lack full mobility, ASIMO is used to encourage young people to study science and mathematics...

 (Advanced Step in Innovative MObility), the world’s first humanoid robot, as well as Honda’s first venture into flight mobility on 3 December 2003, which is HondaJet.

ASIMO

ASIMO
ASIMO
is a humanoid robot created by Honda. Introduced in 2000, ASIMO, which is an acronym for "Advanced Step in Innovative MObility", was created to be a helper to people. With aspirations of helping people who lack full mobility, ASIMO is used to encourage young people to study science and mathematics...

, derived from Advanced Step in Innovative MObility, is pronounced ashimo. It was originally a research and development program undertaken by Honda’s associates to challenge the field of mobility. The advancement of the research prompted Honda to conceive a humanoid robot
Humanoid robot
A humanoid robot or an anthropomorphic robot is a robot with its overall appearance, based on that of the human body, allowing interaction with made-for-human tools or environments. In general humanoid robots have a torso with a head, two arms and two legs, although some forms of humanoid robots...

 capable of interacting with humans and is able to function in society, such as supporting the disabled and elderly.

Asimo started as a pair of mechanical legs and had been in development for over 20 years. E0, the first prototype, debuted in 1986 and evolved into prototype E7 in 1991. By 1993, the prototypes progressed to slightly more man-like walking robots. P1 was introduced in 1993, and subsequently P2 and P3 were presented in 1996 and 1997. The P3 robot was a gawky prototype standing at 160 cm tall and weighed 130 kg.

1986
Experimental model E0, debuted as a two-legged mechanism with a primitive walk.


1987 – 1991
E1 walked at a static pace of 0.25 km/h with a certain distinction of movement between the two legs.
E2 became the first prototype with dynamic movement at 1.2 km/h, mimicking the human walk.
E3 had thigh-like legs and could walk at normal human speed of 3 km/h.


1991 – 1993
E4 could simulate a quicker human step speed of 4.7 km/h. Knee length was also increased to 40 cm.
E5 was the first autonomous locomotion model with a large head cover.
E6 model had improved autonomous balancing control when going up and down the stairs or sloves, even stepping over obstacles.


1993 – 1997
Prototype model P1 was the first man-like model with upper limbs and a body.
P2 was the first autonomous humanoid with realistic movement.
P3 evolved in size and weight, marking it the prototype for Asimo.


In 2000, Asimo was unveiled as a robot with real-time, flexible walking technology which enables it to walk, run, climb and descend stairs. It is also built in with sound, face, posture, environment and movement recognition technology, and could even respond to Internet connectivity to report news and the weather.

By 2004, Honda announced new technologies that target a higher level of mobility which enabled the next-gen Asimo to function and interact with people more naturally. The new technologies introduced include:
  • Posture control technology – Walking speed was increased from 1.6 km/h to 2.5 km/h while running speed increased to 3 km/h. This is aided by a newly developed high-speed processing circuit, highly responsive and high power motor drive unit in addition to a lightweight and highly rigid leg structure. The accuracy and response rate is four times faster than the previous model, matching the equivalent speed of a person jogging.

  • Autonomous Continuous Movement technology - This allows Asimo to manoeuvre without stopping as it obtains information about its surrounding from its floor surface sensor. The floor surface sensor and visual sensors located in its head can detect obstacles so that Asimo can autonomously change its path and avoid hitting humans or other potential hazards.

  • Enhanced visual and force sensor technologies – The sensors are added to the wrists so Asimo can move in sync with people and coordinate its movements to give and receive objects. It can also move forward or backward in response to the direction that its hand is pulled or pushed


With 2005’s Asimo model, Honda added advanced level of physical capabilities that allows Asimo to operate in real-life environments and in sync with people. The new Asimo weighed 54 kg and stood at 130 cm tall. It could carry objects using a cart, walk with a person while holding hands, perform the tasks of a receptionist, carry out delivery service and be an information guide. In addition to enhanced visual sensors, floor surface sensors and ultrasonic sensors, Honda developed an IC Tele-interaction Communication Card which allows Asimo to recognise the location and identity of the person who is standing within a 360-degree range. The IC card is held by the person with whom Asimo interacts. Its mobility was also significantly improved, making it capable of running at 6 km/h and in circular pattern.

By 2007, Honda updated Asimo with improved intelligence technology that enabled it to operate more autonomously. It could now walk to the nearest charging station to recharge its battery when its power falls under a certain level, and is also capable of choosing its movement when approaching people, whether stepping back or negotiate the right of way.

Honda was also determined to focus its area of research in intelligence capabilities, particularly in developing a technology that uses brain signals to control a robot’s movements. By 2009, Honda announced that it has developed a new system, the Brain Machine Interface, which allows human to send commands to Asimo through thought alone. The first-of-its-kind technology uses electroencephalography
Electroencephalography
Electroencephalography is the recording of electrical activity along the scalp. EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain...

 (EEG) and near-infrared spectroscopy
Spectroscopy
Spectroscopy is the study of the interaction between matter and radiated energy. Historically, spectroscopy originated through the study of visible light dispersed according to its wavelength, e.g., by a prism. Later the concept was expanded greatly to comprise any interaction with radiative...

 to record brain activity, combined with a newly developed information-extraction technology to link the analysis and command Asimo to move. An electronic helmet is developed to allow humans to control the robot just by thinking about making the movement. This was demonstrated by scientists at the Honda Research Institute, who showed that it took only a few seconds for thought to be translated into robotic action. The technology is still under development and is not yet ready for general use.

Asimo have travelled across the globe to appear not only at motor shows and schools but prestigious science and engineering events. To demonstrate its latest capabilities, Asimo introduced the versatility of the new Honda Insight at the 2009 Geneva Motor Show. It completed 54 rounds of 15-minute public performances over 13 days, running, walking and interacting with the crowd.

HondaJet

Honda’s research and development in the field of aviation started in the late 1980s. Extensive research and development were carried out with Mississippi State University (MSU) on the HondaJet until 1996 and an experimental aircraft named "MH-02" was finally fabricated.

HondaJet falls under the category of Very Light Jet (VLJ). Usually, a VLJ is able to fly in the max range of 1320 nmi (2,444.6 km) at 380 knots (744.7 km/h), but the HondaJet is able to achieve 420 knots (823.1 km/h) with the similar max range. The HondaJet produces a range 1180 nautical miles (2,185.4 km) with 30-35% higher fuel efficiency when compared to other jets with equivalent performance.

By the year 2003, HondaJet took its first flight. And in 2005, in conjunction with the Experimental Aircraft Association (EAA) AirVenture in Oshkosh, Wisconsin, HondaJet made its first public appearance. The engine used during the flight was the HF118 turbofan jet which produces 1670 pounds of static thrust (lbst) during take-off.

After more than 20 years of research and development, HondaJet's technology in aviation industry was well-received with its over-the-wing engine mount configuration — a patented design invented by Honda engineers which reduces drag and minimizes shock wave. Other innovations include the natural laminar flow (NLF) wing and fuselage nose which also reduces drag. The advanced all-composite fuselage structure was developed with the intention to provide the aircraft with a light structure and greater interior volume. Its cabin offers its passengers with 2 configurations: 2 pilots and 5 passengers; and 2 pilots and 6 passengers.

On July 2005, HondaJet returned to Oshkosh, Wisconsin to announce its commercialisation. It has been said that the production of 70 jets per year will take place in the United States and there were claims that deliveries will begin in 2010 at the price of USD#3.65 million per compact jet.

External links

  • http://world.honda.com/tech/overview Background on Honda advanced technology
  • http://www.honda.se/sw2363.asp?Pid=523
  • http://world.honda.com/factbook/auto/motorshow/200310/10.html
  • http://www.honda.net.my/technology/tech_hondajet.cfm
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK