
Heat capacity ratio
Encyclopedia
Heat Capacity Ratio for various gases | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Temp. | Gas | γ | Temp. | Gas | γ | Temp. | Gas | γ | ||
−181°C | H2 | 1.597 | 200°C | Dry Air | 1.398 | 20°C | NO | 1.400 | ||
−76°C | 1.453 | 400°C | 1.393 | 20°C | N2O | 1.310 | ||||
20°C | 1.410 | 1000°C | 1.365 | −181°C | N2 | 1.470 | ||||
100°C | 1.404 | 2000°C | 1.088 | 15°C | 1.404 | |||||
400°C | 1.387 | 0°C | CO2 | 1.310 | 20°C | Cl2 | 1.340 | |||
1000°C | 1.358 | 20°C | 1.300 | −115°C | CH4 | 1.410 | ||||
2000°C | 1.318 | 100°C | 1.281 | −74°C | 1.350 | |||||
20°C | He | 1.660 | 400°C | 1.235 | 20°C | 1.320 | ||||
20°C | H2O | 1.330 | 1000°C | 1.195 | 15°C | NH3 | 1.310 | |||
100°C | 1.324 | 20°C | CO | 1.400 | 19°C | Ne | 1.640 | |||
200°C | 1.310 | −181°C | O2 | 1.450 | 19°C | Xe | 1.660 | |||
−180°C | Ar | 1.760 | −76°C | 1.415 | 19°C | Kr | 1.680 | |||
20°C | 1.670 | 20°C | 1.400 | 15°C | SO2 | 1.290 | ||||
0°C | Dry Air | 1.403 | 100°C | 1.399 | 360°C | Hg | 1.670 | |||
20°C | 1.400 | 200°C | 1.397 | 15°C | C2H6 | 1.220 | ||||
100°C | 1.401 | 400°C | 1.394 | 16°C | C3H8 | 1.130 |
The heat capacity ratio or adiabatic index or ratio of specific heats, is the ratio of the heat capacity
Heat capacity
Heat capacity , or thermal capacity, is the measurable physical quantity that characterizes the amount of heat required to change a substance's temperature by a given amount...
at constant pressure (




Kappa
Kappa is the 10th letter of the Greek alphabet, used to represent the voiceless velar stop, or "k", sound in Ancient and Modern Greek. In the system of Greek numerals it has a value of 20. It was derived from the Phoenician letter Kaph...
). The latter symbol kappa is primarily used by chemical engineers. Mechanical engineers use the Roman
Latin alphabet
The Latin alphabet, also called the Roman alphabet, is the most recognized alphabet used in the world today. It evolved from a western variety of the Greek alphabet called the Cumaean alphabet, which was adopted and modified by the Etruscans who ruled early Rome...
letter


where,




To understand this relation, consider the following experiment:
A closed cylinder with a locked piston
Piston
A piston is a component of reciprocating engines, reciprocating pumps, gas compressors and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from...
contains air. The pressure inside is equal to the outside air pressure. This cylinder is heated to a certain target temperature. Since the piston cannot move, the volume is constant, while temperature and pressure rise. When the target temperature is reached, the heating is stopped. The piston is now freed and moves outwards, expanding without exchange of heat (adiabatic expansion
Adiabatic process
In thermodynamics, an adiabatic process or an isocaloric process is a thermodynamic process in which the net heat transfer to or from the working fluid is zero. Such a process can occur if the container of the system has thermally-insulated walls or the process happens in an extremely short time,...
). Doing this work
Mechanical work
In physics, work is a scalar quantity that can be described as the product of a force times the distance through which it acts, and it is called the work of the force. Only the component of a force in the direction of the movement of its point of application does work...
cools the air inside the cylinder to below the target temperature. To return to the target temperature (still with a free piston), the air must be heated. This extra heat amounts to about 40% more than the previous amount added. In this example, the amount of heat added with a locked piston is proportional to


Another way of understanding the difference between






Ideal gas relations
For an ideal gas, the heat capacity is constant with temperature. Accordingly we can express the enthalpyEnthalpy
Enthalpy is a measure of the total energy of a thermodynamic system. It includes the internal energy, which is the energy required to create a system, and the amount of energy required to make room for it by displacing its environment and establishing its volume and pressure.Enthalpy is a...
as

Internal energy
In thermodynamics, the internal energy is the total energy contained by a thermodynamic system. It is the energy needed to create the system, but excludes the energy to displace the system's surroundings, any energy associated with a move as a whole, or due to external force fields. Internal...
as


Furthermore, the heat capacities can be expressed in terms of heat capacity ratio (

Gas constant
The gas constant is a physical constant which is featured in many fundamental equations in the physical sciences, such as the ideal gas law and the Nernst equation. It is equivalent to the Boltzmann constant, but expressed in units of energy The gas constant (also known as the molar, universal,...
(


It can be rather difficult to find tabulated information for




Where n is the amount of substance
Amount of substance
Amount of substance is a standards-defined quantity that measures the size of an ensemble of elementary entities, such as atoms, molecules, electrons, and other particles. It is sometimes referred to as chemical amount. The International System of Units defines the amount of substance to be...
in moles.
Relation with degrees of freedom
The heat capacity ratio (
Degrees of freedom (physics and chemistry)
A degree of freedom is an independent physical parameter, often called a dimension, in the formal description of the state of a physical system...
(


Thus we observe that for a monatomic gas, with three degrees of freedom:

while for a diatomic
Diatomic
Diatomic molecules are molecules composed only of two atoms, of either the same or different chemical elements. The prefix di- means two in Greek. Common diatomic molecules are hydrogen , nitrogen , oxygen , and carbon monoxide . Seven elements exist in the diatomic state in the liquid and solid...
gas, with five degrees of freedom (at room temperature):

E.g.: The terrestrial air is primarily made up of diatomic
Diatomic
Diatomic molecules are molecules composed only of two atoms, of either the same or different chemical elements. The prefix di- means two in Greek. Common diatomic molecules are hydrogen , nitrogen , oxygen , and carbon monoxide . Seven elements exist in the diatomic state in the liquid and solid...
gases (~78% nitrogen
Nitrogen
Nitrogen is a chemical element that has the symbol N, atomic number of 7 and atomic mass 14.00674 u. Elemental nitrogen is a colorless, odorless, tasteless, and mostly inert diatomic gas at standard conditions, constituting 78.08% by volume of Earth's atmosphere...
(N2) and ~21% oxygen
Oxygen
Oxygen is the element with atomic number 8 and represented by the symbol O. Its name derives from the Greek roots ὀξύς and -γενής , because at the time of naming, it was mistakenly thought that all acids required oxygen in their composition...
(O2)) and, at standard conditions it can be considered to be an ideal gas. A diatomic molecule has five degrees of freedom (three translational and two rotational degrees of freedom, the vibrational degree of freedom is not involved except at high temperatures). This results in a value of
-
.
This is consistent with the measured adiabatic index of approximately 1.403 (listed above in the table).
Real gas relations
As temperature increases, higher energy rotational and vibrational states become accessible to molecular gases, thus increasing the number of degrees of freedom and lowering
For a real gas, both





Thermodynamic expressions
Values based on approximations (particularly



Values for


The above definition is the approach used to develop rigorous expressions from equations of state (such as Peng-Robinson), which match experimental values so closely that there is little need to develop a database of ratios or

Finite difference method
In mathematics, finite-difference methods are numerical methods for approximating the solutions to differential equations using finite difference equations to approximate derivatives.- Derivation from Taylor's polynomial :...
.
Adiabatic process
This ratio gives the important relation for an isentropic (quasistaticQuasistatic process
In thermodynamics, a quasistatic process is a thermodynamic process that happens infinitely slowly. However, it is very important of note that no real process is quasistatic...
, reversible, adiabatic process
Adiabatic process
In thermodynamics, an adiabatic process or an isocaloric process is a thermodynamic process in which the net heat transfer to or from the working fluid is zero. Such a process can occur if the container of the system has thermally-insulated walls or the process happens in an extremely short time,...
) process of a simple compressible calorically perfect ideal gas
Ideal gas
An ideal gas is a theoretical gas composed of a set of randomly-moving, non-interacting point particles. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics.At normal conditions such as...
:

where


See also
- Heat capacityHeat capacityHeat capacity , or thermal capacity, is the measurable physical quantity that characterizes the amount of heat required to change a substance's temperature by a given amount...
- Specific heat capacity
- Speed of soundSpeed of soundThe speed of sound is the distance travelled during a unit of time by a sound wave propagating through an elastic medium. In dry air at , the speed of sound is . This is , or about one kilometer in three seconds or approximately one mile in five seconds....
- Thermodynamic equationsThermodynamic equationsThermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process...
- ThermodynamicsThermodynamicsThermodynamics is a physical science that studies the effects on material bodies, and on radiation in regions of space, of transfer of heat and of work done on or by the bodies or radiation...
- Volumetric heat capacityVolumetric heat capacityVolumetric heat capacity , also termed volume-specific heat capacity, describes the ability of a given volume of a substance to store internal energy while undergoing a given temperature change, but without undergoing a phase change...