Groundwater remediation
Encyclopedia
Groundwater remediation is the process that is used to remove pollution
Pollution
Pollution is the introduction of contaminants into a natural environment that causes instability, disorder, harm or discomfort to the ecosystem i.e. physical systems or living organisms. Pollution can take the form of chemical substances or energy, such as noise, heat or light...

 from groundwater
Groundwater
Groundwater is water located beneath the ground surface in soil pore spaces and in the fractures of rock formations. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock...

. Groundwater
Groundwater
Groundwater is water located beneath the ground surface in soil pore spaces and in the fractures of rock formations. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock...

 is water present below the ground surface that saturates the pore space in the subsurface. At least one half of the population of the United States depends upon groundwater as a source of drinking water. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions. The many and diverse activities of man produce innumerable waste materials and by-products; before the 1980s, the regulation of these wastes was less stringent and waste materials were often disposed of or stored on land surfaces where they percolated into the underlying soil and eventually were carried downward, contaminating the underlying groundwater and therefore jeopardizing the natural quality of it. As a result, contaminated groundwater became unsuitable for use. Current practices can still impact groundwater, such as the over application of fertilizer or pesticides, spills from industrial operations, infiltration from urban runoff, and leaking from landfills. Using contaminated ground water causes hazards to public health through poisoning or the spread of disease, and the practice of groundwater remediation has been developed to address these issues. Contaminants found in ground water cover a broad range of physical, inorganic chemical, organic chemical, bacteriological, and radioactive parameters. Pollutants and contaminants can be removed from ground water by applying various techniques thereby making it safe for use.

Techniques

Ground water remediation techniques span biological, chemical, and physical treatment technologies. Most ground water treatment techniques utilize a combination of technologies. Some of the biological treatment techniques include bioaugmentation
Bioaugmentation
Bioaugmentation is the introduction of a group of natural microbial strains or a genetically engineered variant to treat contaminated soil or water....

, bioventing, biosparging, bioslurping, and phytoremediation
Phytoremediation
Phytoremediation Phytoremediation Phytoremediation (from the Ancient Greek , and Latin (restoring balance or remediation) describes the treatment of environmental problems (bioremediation) through the use of plants that mitigate the environmental problem without the need to excavate the...

. Some chemical treatment techniques include ozone and oxygen gas injection, chemical precipitation, membrane separation
Membrane technology
The membrane technology covers all process engineering measures for the transport of substances between two fractions with the help of permeable membranes...

, ion exchange
Ion exchange
Ion exchange is an exchange of ions between two electrolytes or between an electrolyte solution and a complex. In most cases the term is used to denote the processes of purification, separation, and decontamination of aqueous and other ion-containing solutions with solid polymeric or mineralic 'ion...

, carbon absorption, aqueous chemical oxidation, and surfactant enhanced recovery. Physical treatment techniques include, but not limited to, pump and treat, air sparging, and dual phase extraction.

Bioaugmentation

If a treatability study shows no degradation (or an extended lab period before significant degradation is achieved) in contamination contained in the groundwater, then inoculation with strains known to be capable of degrading the contaminants may be helpful. This process increases the reactive enzyme concentration within the bioremediation system and subsequently may increase contaminant degradation rates over the nonaugmented rates, at least initially after inoculation.

Bioventing

Bioventing is an in situ
In situ
In situ is a Latin phrase which translated literally as 'In position'. It is used in many different contexts.-Aerospace:In the aerospace industry, equipment on board aircraft must be tested in situ, or in place, to confirm everything functions properly as a system. Individually, each piece may...

 remediation technology that uses microorganism
Microorganism
A microorganism or microbe is a microscopic organism that comprises either a single cell , cell clusters, or no cell at all...

s to biodegrade organic
Organic matter
Organic matter is matter that has come from a once-living organism; is capable of decay, or the product of decay; or is composed of organic compounds...

 constituents adsorbed in the groundwater. Bioventing enhances the activity of indigenous bacteria and simulates the natural in situ biodegradation of hydrocarbon
Hydrocarbon
In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons from which one hydrogen atom has been removed are functional groups, called hydrocarbyls....

s by inducing air or oxygen
Oxygen
Oxygen is the element with atomic number 8 and represented by the symbol O. Its name derives from the Greek roots ὀξύς and -γενής , because at the time of naming, it was mistakenly thought that all acids required oxygen in their composition...

 flow into the unsaturated zone and, if necessary, by adding nutrients. During bioventing, oxygen may be supplied through direct air injection into residual contamination in soil. Bioventing primarily assists in the degradation of adsorbed fuel residuals, but also assists in the degradation of volatile organic compounds (VOCs) as vapors move slowly through biologically active soil.

Biosparging

Biosparging is an in situ
In situ
In situ is a Latin phrase which translated literally as 'In position'. It is used in many different contexts.-Aerospace:In the aerospace industry, equipment on board aircraft must be tested in situ, or in place, to confirm everything functions properly as a system. Individually, each piece may...

 remediation technology that uses indigenous microorganisms to biodegrade organic constituents in the saturated zone. In biosparging, air (or oxygen) and nutrients (if needed) are injected into the saturated zone to increase the biological activity of the indigenous microorganisms. Biosparging can be used to reduce concentrations of petroleum
Petroleum
Petroleum or crude oil is a naturally occurring, flammable liquid consisting of a complex mixture of hydrocarbons of various molecular weights and other liquid organic compounds, that are found in geologic formations beneath the Earth's surface. Petroleum is recovered mostly through oil drilling...

 constituents that are dissolved in groundwater, adsorbed to soil
Soil
Soil is a natural body consisting of layers of mineral constituents of variable thicknesses, which differ from the parent materials in their morphological, physical, chemical, and mineralogical characteristics...

 below the water table
Water table
The water table is the level at which the submarine pressure is far from atmospheric pressure. It may be conveniently visualized as the 'surface' of the subsurface materials that are saturated with groundwater in a given vicinity. However, saturated conditions may extend above the water table as...

, and within the capillary fringe
Capillary fringe
The capillary fringe is the subsurface layer in which groundwater seeps up from a water table by capillary action to fill pores. Pores at the base of the capillary fringe are filled with water due to tension saturation. This saturated portion of the capillary fringe is less than total capillary...

.

Bioslurping

Bioslurping combines elements of bioventing and vacuum-enhanced pumping of free-product that is lighter than water (light non-aqueous phase liquid
Light non-aqueous phase liquid
A Light Non-Aqueous Phase Liquid is a groundwater contaminant that is not soluble and has a lower density than water, which is the opposite of DNAPL. Once LNAPL infiltrates through the soil, it will stop at the height of the water table since LNAPL is less dense than water...

 or LNAPL) to recover free-product from the groundwater and soil, and to bioremediate soils. The bioslurper system uses a “slurp” tube that extends into the free-product layer. Much like a straw in a glass draws liquid, the pump draws liquid (including free-product) and soil gas up the tube in the same process stream. Pumping lifts LNAPLs, such as oil, off the top of the water table and from the capillary fringe (i.e., an area just above the saturated zone, where water is held in place by capillary forces). The LNAPL is brought to the surface, where it is separated from water and air. The biological processes in the term “bioslurping” refer to aerobic biological degradation of the hydrocarbons when air is introduced into the unsaturated zone.

Phytoremediation

In the phytoremediation
Phytoremediation
Phytoremediation Phytoremediation Phytoremediation (from the Ancient Greek , and Latin (restoring balance or remediation) describes the treatment of environmental problems (bioremediation) through the use of plants that mitigate the environmental problem without the need to excavate the...

 process certain plants and trees are planted, whose roots absorb contaminants from ground water over time, and are harvested and destroyed. This process can be carried out in areas where the roots can tap the ground water. Few examples of plants that are used in this process are Chinese Ladder fern Pteris vittata, also known as the brake fern, is a highly efficient accumulator of arsenic
Arsenic
Arsenic is a chemical element with the symbol As, atomic number 33 and relative atomic mass 74.92. Arsenic occurs in many minerals, usually in conjunction with sulfur and metals, and also as a pure elemental crystal. It was first documented by Albertus Magnus in 1250.Arsenic is a metalloid...

. Genetically altered cottonwood trees are good absorbers of mercury
Mercury (element)
Mercury is a chemical element with the symbol Hg and atomic number 80. It is also known as quicksilver or hydrargyrum...

 and transgenic Indian mustard plants soak up selenium
Selenium
Selenium is a chemical element with atomic number 34, chemical symbol Se, and an atomic mass of 78.96. It is a nonmetal, whose properties are intermediate between those of adjacent chalcogen elements sulfur and tellurium...

 well.

Permeable Reactive Barriers

Certain types of permeable reactive barriers utilize biological organisms in order to remediate groundwater.

Chemical precipitation

Chemical precipitation
Precipitation (chemistry)
Precipitation is the formation of a solid in a solution or inside anothersolid during a chemical reaction or by diffusion in a solid. When the reaction occurs in a liquid, the solid formed is called the precipitate, or when compacted by a centrifuge, a pellet. The liquid remaining above the solid...

 is commonly used in wastewater treatment
Wastewater Treatment
Wastewater treatment may refer to:* Sewage treatment* Industrial wastewater treatment...

 to remove hardness and heavy metals
Heavy metals
A heavy metal is a member of a loosely-defined subset of elements that exhibit metallic properties. It mainly includes the transition metals, some metalloids, lanthanides, and actinides. Many different definitions have been proposed—some based on density, some on atomic number or atomic weight,...

. In general, the process involves addition of agent to an aqueous waste stream in a stirred reaction vessel, either batchwise or with steady flow. Most metals can be converted to insoluble compounds by chemical reactions between the agent and the dissolved metal ions. The insoluble compounds (precipitates) are removed by settling and/or filtering.

Ion exchange

Ion exchange
Ion exchange
Ion exchange is an exchange of ions between two electrolytes or between an electrolyte solution and a complex. In most cases the term is used to denote the processes of purification, separation, and decontamination of aqueous and other ion-containing solutions with solid polymeric or mineralic 'ion...

 for ground water remediation is virtually always carried out by passing the water downward under pressure through a fixed bed of granular medium (either cation exchange media and anion exchange media) or spherical beads. Cations are displaced by certain cations from the solutions and ions are displaced by certain anions from the solution. Ion exchange media most often used for remediation are zeolite
Zeolite
Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. The term zeolite was originally coined in 1756 by Swedish mineralogist Axel Fredrik Cronstedt, who observed that upon rapidly heating the material stilbite, it produced large amounts of steam from water that...

s (both natural and synthetic) and synthetic resins.

Carbon absorption

The most common activated carbon used for remediation is derived from bituminous coal
Bituminous coal
Bituminous coal or black coal is a relatively soft coal containing a tarlike substance called bitumen. It is of higher quality than lignite coal but of poorer quality than Anthracite...

. Activated carbon
Activated carbon
Activated carbon, also called activated charcoal, activated coal or carbo activatus, is a form of carbon that has been processed to make it extremely porous and thus to have a very large surface area available for adsorption or chemical reactions.The word activated in the name is sometimes replaced...

 absorbs volatile organic compounds from ground water by chemically binding them to the carbon atoms.

Chemical oxidation

In this process, called In Situ Chemical Oxidation or ISCO, chemical oxidants are delivered in the subsurface to destroy (converted to water and carbon dioxide or to nontoxic substances) the organics molecules. The oxidants are introduced as either liquids or gasses. Oxidants include air or oxygen, ozone
Ozone
Ozone , or trioxygen, is a triatomic molecule, consisting of three oxygen atoms. It is an allotrope of oxygen that is much less stable than the diatomic allotrope...

, and certain liquid chemicals such as hydrogen peroxide
Hydrogen peroxide
Hydrogen peroxide is the simplest peroxide and an oxidizer. Hydrogen peroxide is a clear liquid, slightly more viscous than water. In dilute solution, it appears colorless. With its oxidizing properties, hydrogen peroxide is often used as a bleach or cleaning agent...

, permanganate
Permanganate
A permanganate is the general name for a chemical compound containing the manganate ion, . Because manganese is in the +7 oxidation state, the permanganate ion is a strong oxidizing agent. The ion has tetrahedral geometry...

 and persulfate
Persulfate
The term persulfate refers to ions or compounds with more oxygen than normal sulfates.These do not have sulfur in a different oxidation state; rather, they contain peroxide units, where two oxygens take the place of one in a normal sulfate; the oxygen atoms are in oxidation state −1.The main forms...

.
Ozone and oxygen gas can be generated on site from air and electricity and directly injected into soil and groundwater contamination. The process has the potential to oxidize and/or enhance naturally occurring aerobic degradation. Chemical oxidation hasnpeoven to be an effective techique for dense non-aqueous phase liquid or DNAPL when it is present.

Surfactant enhanced recovery

Surfactant enhanced recovery increases the mobility and solubility of the contaminants absorbed to the saturated soil matrix or present as dense non-aqueous phase liquid. Surfactant-enhanced recovery injects surfactant
Surfactant
Surfactants are compounds that lower the surface tension of a liquid, the interfacial tension between two liquids, or that between a liquid and a solid...

s (surface-active agents that are primary ingredient in soap and detergent) into contaminated groundwater. A typical system uses an extraction pump to remove groundwater downstream from the injection point. The extracted groundwater is treated aboveground to separate the injected surfactants from the contaminants and groundwater. Once the surfactants have separated from the groundwater they are re-used. The surfactants used are non-toxic, food-grade, and biodegradable. Surfactant enhanced recovery is used most often when the groundwater is contaminated by dense non-aqueous phase liquids (DNAPLs). These dense compounds, such as trichloroethylene
Trichloroethylene
The chemical compound trichloroethylene is a chlorinated hydrocarbon commonly used as an industrial solvent. It is a clear non-flammable liquid with a sweet smell. It should not be confused with the similar 1,1,1-trichloroethane, which is commonly known as chlorothene.The IUPAC name is...

 (TCE), sink in groundwater because they have a higher density than water. They then act as a continuous source for contaminant plumes that can stretch for miles within an aquifer. These compounds may biodegrade very slowly. They are commonly found in the vicinity of the original spill or leak where capillary forces have trapped them.

Permeable reactive barriers

Some permeable reactive barriers utilize chemical processes to achieve groundwater remediation.

One particular type of permeable reactive barrier utilizes a swellable, organically-modified silica
Osorb
Osorb is a swellable, organically-modified silica or glass capable of absorbing volatile organic compounds and other contaminants from water. The glass was discovered by Dr. Paul L. Edmiston and is trademarked by ABSMaterials, Inc.-History of discovery:...

 embedded in iron
Iron
Iron is a chemical element with the symbol Fe and atomic number 26. It is a metal in the first transition series. It is the most common element forming the planet Earth as a whole, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust...

, which is injected in situ
In situ
In situ is a Latin phrase which translated literally as 'In position'. It is used in many different contexts.-Aerospace:In the aerospace industry, equipment on board aircraft must be tested in situ, or in place, to confirm everything functions properly as a system. Individually, each piece may...

 in order to create a permanent soft barrier in the ground. Water filters through the barrier, and the silica material absorbs toxins, such as TCE
TCE
TCE may mean:**Tail call elimination*Tail conditional expectation*Thiagarajar College of Engineering, Madurai*Tangible Common Equity, an obscure but increasingly pivotal measure of banks' capital...

. The iron dechlorinates the solvents in the groundwater, often reducing toxicity levels below detectable limits with no toxic daughter products, no solid waste removal, and no air pollution. This type of permeable reactive barrier is also more dispersed than others.

Pump and treat

Pump and treat is one of the most widely used ground water remediation technologies. In this process ground water is pumped to the surface and is coupled with either biological or chemical treatments to remove the impurities.

Air sparging

Air sparging is the process of blowing air directly into the ground water. As the bubbles rise, the contaminants are removed from the groundwater by physical contact with the air (i.e., stripping) and are carried up into the unsaturated zone (i.e., soil). As the contaminants move into the soil, a soil vapor extraction
Soil vapor extraction
Soil Vapor Extraction is an in situ process for soil remediation where contamination is removed from soil by carrying it out through a medium such as air or steam. The extracted soil vapors are separated into liquids and vapors, and each stream is treated as necessary...

 system is usually used to remove vapors.

Dual phase vacuum extraction

Dual-phase vacuum extraction (DPVE), also known as multi-phase extraction, is a technology that uses a high-vacuum system to remove both contaminated groundwater and soil vapor. In DPVE systems a high-vacuum extraction well is installed with its screened section in the zone of contaminated soils and groundwater. Fluid/vapor extraction systems depress the water table and water flows faster to the extraction well. DPVE removes contaminants from above and below the water table. As the water table around the well is lowered from pumping, unsaturated soil is exposed. This area, called the capillary fringe
Capillary fringe
The capillary fringe is the subsurface layer in which groundwater seeps up from a water table by capillary action to fill pores. Pores at the base of the capillary fringe are filled with water due to tension saturation. This saturated portion of the capillary fringe is less than total capillary...

, is often highly contaminated, as it holds undissolved chemicals, chemicals that are lighter than water, and vapors that have escaped from the dissolved groundwater below. Contaminants in the newly exposed zone can be removed by vapor extraction. Once above ground, the extracted vapors and liquid-phase organics and groundwater are separated and treated. Use of dual-phase vacuum extraction with these technologies can shorten the cleanup time at a site, because the capillary fringe
Capillary fringe
The capillary fringe is the subsurface layer in which groundwater seeps up from a water table by capillary action to fill pores. Pores at the base of the capillary fringe are filled with water due to tension saturation. This saturated portion of the capillary fringe is less than total capillary...

 is often the most contaminated area.

Monitoring-Well Oil Skimming

Monitoring-wells are often drilled for the purpose of collecting ground water samples for analysis. These wells, which are usually six inches or fewer in diameter, can also be used to remove hydrocarbons from the contaminant plume within a groundwater aquifer by using a belt style oil skimmer. Belt oil skimmers, which are simple in design, are commonly used to remove oil and other floating hydrocarbon contaminants from industrial water systems.

A monitoring-well oil skimmer remediates various oils, ranging from light fuel oils such as petrol, light diesel or kerosene to heavy products such as No. 6 oil, creosote and coal tar. It consists of a continuously moving belt that runs on a pulley system driven by an electric motor. The belt material has a strong affinity for hydrocarbon
Hydrocarbon
In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons from which one hydrogen atom has been removed are functional groups, called hydrocarbyls....

 liquids and for shedding water. The belt, which can have a vertical drop of 100+ feet, is lowered into the monitoring well past the LNAPL/water interface. As the belt moves through this interface it picks up liquid hydrocarbon contaminant, which is removed and collected at ground level as the belt passes through a wiper mechanism. To the extent that DNAPL
DNAPL
A dense non-aqueous phase liquid or DNAPL is a liquid that is both denser than water and is immiscible in or does not dissolve in water.The term DNAPL is used primarily by environmental engineers and hydrogeologists to describe contaminants in groundwater, surface water and sediments...

 hydrocarbons settle at the bottom of a monitoring well, and the lower pulley of the belt skimmer reaches them, these contaminants can also be removed by a monitoring-well oil skimmer.

Typically, belt skimmers remove very little water with the contaminant, so simple weir type separators can be used to collect any remaining hydrocarbon liquid, which often makes the water suitable for its return to the aquifer. Because the small electric motor uses little electricity, it can be powered from solar panels or a wind turbine
Wind turbine
A wind turbine is a device that converts kinetic energy from the wind into mechanical energy. If the mechanical energy is used to produce electricity, the device may be called a wind generator or wind charger. If the mechanical energy is used to drive machinery, such as for grinding grain or...

, making the system self-sufficient and eliminating the cost of running electricity to a remote location.

See also

  • Toxic torts
  • Brownfield
  • CERCLA
  • Water pollution
    Water pollution
    Water pollution is the contamination of water bodies . Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove harmful compounds....

  • Plume (hydrodynamics)
    Plume (hydrodynamics)
    In hydrodynamics, a plume is a column of one fluid or gas moving through another. Several effects control the motion of the fluid, including momentum, diffusion, and buoyancy...

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK