Ground-coupled heat exchanger
Encyclopedia
A ground-coupled heat exchanger is an underground heat exchanger loop that can capture or dissipate heat to or from the ground. They use the Earth's near constant subterranean temperature to warm or cool air or other fluids for residential, agricultural or industrial uses. If building air is blown through the heat exchanger for heat recovery ventilation
, they are called earth tubes (also known as earth cooling tubes or earth warming tubes) in Europe or earth-air heat exchangers (EAHE or EAHX) in North America. These systems are known by several other names, including: air-to-soil heat exchanger, earth channels, earth canals, earth-air tunnel systems, ground tube heat exchanger, hypocausts, subsoil heat exchangers, underground air pipes, and others.
Earth tubes are often a viable and economical alternative or supplement to conventional central heating
or air conditioning
systems since there are no compressors, chemicals or burners and only blowers are required to move the air. These are used for either partial or full cooling and/or heating of facility ventilation air. Their use can help buildings meet Passive House
standards or LEED
certification.
Earth-air heat exchangers have been used in agricultural facilities (animal buildings) and horticultural facilities (greenhouses) in the United States over the past several decades and have been used in conjunction with solar chimneys in hot arid areas for thousands of years, probably beginning in the Persian Empire. Implementation of these systems in Austria, Denmark, Germany, and India has become fairly common since the mid-1990s, and is slowly being adopted into North America.
Ground-coupled heat exchanger may also use water or antifreeze as a heat transfer fluid, often in conjunction with a geothermal heat pump. See, for example downhole heat exchanger
s.http://geoheat.oit.edu/bulletin/bull20-3/art1.pdf The rest of this article deals primarily with earth-air heat exchangers or earth tubes.
, with simple payback often achieved within one year after installation.
Most systems are usually constructed from 100 to 600 mm (4 to 24 inch) diameter, smooth-walled (so they do not easily trap condensation moisture and mold), rigid or semi-rigid plastic, plastic-coated metal pipes or plastic pipes coated with inner antimicrobial layers, buried 1.5 to 3 m (5 to 10 ft) underground where the ambient earth temperature is typically 10 to 23 °C (50-73 °F ) all year round in the temperate latitudes where most humans live. Ground temperature becomes more stable with depth.
Smaller diameter tubes require more energy to move the air and have less earth contact surface area. Larger tubes permit a slower airflow, which also yields more efficient energy transfer and permits much higher volumes to be transferred, permitting more air exchanges in a shorter time period, when, for example, you want to clear the building of objectionable odors or smoke. It is more efficient to pull air through a long tube than to push it with a fan. A solar chimney
can use natural convection (warm air rising) to create a vacuum to draw filtered passive cooling tube air through the largest diameter cooling tubes. Natural convection may be slower than using a solar-powered fan. Sharp 90-degree angles should be avoided in the construction of the tube - two 45-degree bends produce less-turbulent, more efficient air flow. While smooth-wall tubes are more efficient in moving the air, they are less efficient in transferring energy.
There are three configurations, a closed loop design, an open 'fresh air' system or a combination:
Single-pass earth air heat exchangers offer the potential for indoor air quality improvement over conventional systems by providing an increased supply of outdoor air. In some configurations of single-pass systems, a continuous supply of outdoor air is provided. This type of system would usually include one or more ventilation heat recovery units.
Formal research indicates that earth-air heat exchangers reduce building ventilation air pollution. Rabindra (2004) states, “The tunnel [earth-Air heat exchanger] is found not to support the growth of bacteria and fungi; rather it is found to reduce the quantity of bacteria and fungi thus making the air safer for humans to inhale. It is therefore clear that the use of EAT [Earth Air Tunnel] not only helps save the energy but also helps reduce the air pollution by reducing bacteria and fungi.” Likewise, Flueckiger (1999) in a study of twelve earth-air heat exchangers varying in design, pipe material, size and age, stated, “This study was performed because of concerns of potential microbial growth in the buried pipes of ground-coupled air systems. The results however demonstrate, that no harmful growth occurs and that the airborne concentrations of viable spores and bacteria, with few exceptions, even decreases after passage through the pipe-system”, and further stated, “Based on these investigations the operation of ground-coupled earth-to-air heat exchangers is acceptable as long as regular controls are undertaken and if appropriate cleaning facilities are available”.
Whether using earth tubes with or without antimicrobial material, it is extremely important that the underground cooling tubes have an excellent condensation drain and be installed at a 2-3 degree grade to ensure the constant removal of condensed water from the tubes. When implementing in a house without a basement on a flat lot, an external condensation tower can be installed at a depth lower than where the tube enters into the house and at a point close to the wall entry. The condensation tower installation requires the added use of a condensate pump in which to remove the water from the tower. For installations in houses with basements, the pipes are graded so that the condensation drain located within the house is at the lowest point. In either installation, the tube must continually slope towards either the condensation tower or the condensation drain. The inner surface of the tube, including all joints must be smooth to aid in the flow and removal of condensate. Corrugated or ribbed tubes and rough interior joints must not be used. Joints connecting the tubes together must be tight enough to prevent water or gas infiltration. In certain geographic areas, it is important that the joints prevent Radon gas infiltration. Porous materials like uncoated concrete tubes cannot be used. Ideally, Earth Tubes with antimicrobial inner layers should be used in installations to inhibit the potential growth of molds and bacteria within the tubes.
Earth-air heat exchangers can be very cost effective in both up-front/capital costs as well as long-term operation and maintenance costs. However, this varies widely depending on the location latitude, altitude, ambient Earth temperature, climatic temperature-and-relative-humidity extremes, solar radiation, water table, soil type (thermal conductivity
), soil moisture content and the efficiency of the building's exterior envelope design / insulation. Generally, dry-and-low-density soil with little or no ground shade will yield the least benefit, while dense damp soil with considerable shade should perform well. A slow drip watering system may improve thermal performance. Damp soil in contact with the cooling tube conducts heat more efficiently than dry soil.
Earth cooling tubes are much less effective in hot humid climates (like Florida) where the ambient temperature of the earth approaches human comfort temperature. The higher the ambient temperature of the earth, the less effective they are for cooling and dehumidification. However, they can be used to partially cool and dehumidify the replacement fresh air intake for passive-solar thermal buffer zone areas like the laundry room, or a solarium
/ greenhouse, especially those with a hot tub, swim spa, or indoor swimming pool, where warm humid air is exhausted in the summer, and a supply of cooler drier replacement air is desired.
Not all regions and sites are suitable for earth-air heat exchangers. Conditions which may hinder or preclude proper implementation include shallow bedrock, high water table, and insufficient space, among others. In some areas, only cooling or heating may be afforded by earth-air heat exchangers. In these areas, provision for thermal recharge of the ground must especially be considered. In dual function systems (both heating and cooling), the warm season provides ground thermal recharge for the cool season and the cool season provides ground thermal recharge for the warm season, though overtaxing the thermal reservoir must be considered even with dual function systems.
Renata Limited
, a prominent pharmaceutical company in Bangladesh
, tried out a pilot project trying to find out whether they could use the Earth Air Tunnel technology to complement the conventional air conditioning system. Concrete pipes (total length 60 feet, inner diameter 9 inches, outer diameter 11 inches) were placed at a depth of 9 feet underground and a blower of 1.5 kW rated power was employed. The underground temperature at that depth was found to be around 28°C. The mean velocity of air in the tunnel was about 5 m/s. The Coefficient of Performance (COP) of the underground heat exchanger thus designed was poor ranging from 1.5-3. The results convinced the authorities that in hot and humid climates, it is unwise to implement the concept of Earth-Air heat exchanger. The cooling medium (earth itself) being at a temperature approaching that of the ambient environment happens to be the root cause of the failure of such principles in hot, humid areas (parts of Southeast Asia
, Florida
in the U.S.A. etc.). However, investigators from places like Britain
and Turkey
have reported very encouraging COP
s-well above 20. The underground temperature seems to be of prime importance when planning an Earth-Air heat exchanger.
reserves, increasing electrical costs, air pollution
and global warming
, properly-designed earth cooling tubes offer a sustainable alternative to reduce or eliminate the need for conventional compressor-based air conditioning systems, in non-tropical climates. They also provide the added benefit of controlled, filtered, temperate fresh air intake, which is especially valuable in tight, well-weatherized, efficient building envelopes.
Many European installations are now using this setup due to the ease of installation. No fall or drainage point is required and it is safe because of the reduced risk from mold.
Heat recovery ventilation
Heat recovery ventilation, also known as HRV, mechanical ventilation heat recovery, or MVHR, is an energy recovery ventilation system using equipment known as a heat recovery ventilator, heat exchanger, air exchanger, or air-to-air heat exchanger which employs a counter-flow heat exchanger between...
, they are called earth tubes (also known as earth cooling tubes or earth warming tubes) in Europe or earth-air heat exchangers (EAHE or EAHX) in North America. These systems are known by several other names, including: air-to-soil heat exchanger, earth channels, earth canals, earth-air tunnel systems, ground tube heat exchanger, hypocausts, subsoil heat exchangers, underground air pipes, and others.
Earth tubes are often a viable and economical alternative or supplement to conventional central heating
Central heating
A central heating system provides warmth to the whole interior of a building from one point to multiple rooms. When combined with other systems in order to control the building climate, the whole system may be a HVAC system.Central heating differs from local heating in that the heat generation...
or air conditioning
Air conditioning
An air conditioner is a home appliance, system, or mechanism designed to dehumidify and extract heat from an area. The cooling is done using a simple refrigeration cycle...
systems since there are no compressors, chemicals or burners and only blowers are required to move the air. These are used for either partial or full cooling and/or heating of facility ventilation air. Their use can help buildings meet Passive House
Passive house
The term passive house refers to the rigorous, voluntary, Passivhaus standard for energy efficiency in a building, reducing its ecological footprint. It results in ultra-low energy buildings that require little energy for space heating or cooling. A similar standard, MINERGIE-P, is used in...
standards or LEED
Leadership in Energy and Environmental Design
Leadership in Energy and Environmental Design consists of a suite of rating systems for the design, construction and operation of high performance green buildings, homes and neighborhoods....
certification.
Earth-air heat exchangers have been used in agricultural facilities (animal buildings) and horticultural facilities (greenhouses) in the United States over the past several decades and have been used in conjunction with solar chimneys in hot arid areas for thousands of years, probably beginning in the Persian Empire. Implementation of these systems in Austria, Denmark, Germany, and India has become fairly common since the mid-1990s, and is slowly being adopted into North America.
Ground-coupled heat exchanger may also use water or antifreeze as a heat transfer fluid, often in conjunction with a geothermal heat pump. See, for example downhole heat exchanger
Downhole heat exchanger
A downhole heat exchanger, also called a borehole heat exchanger, is a heat exchanger installed inside a borehole. It is used to capture or dissipate heat to or from the ground...
s.http://geoheat.oit.edu/bulletin/bull20-3/art1.pdf The rest of this article deals primarily with earth-air heat exchangers or earth tubes.
Design
Earth-air heat exchangers can be analyzed for performance with several software applications using weather gage data. These software applications include GAEA, AWADUKT Thermo, EnergyPlus, L-EWTSim, WKM, and others. However, numerous earth-air heat exchanger systems have been designed and constructed improperly, and failed to meet design expectations. Earth-air heat exchangers appear best suited for air pretreatment rather than for full heating or cooling. Pretreatment of air for an air-source heat pump or ground-source heat pump often provides the best economic return on investmentReturn on investment
Return on investment is one way of considering profits in relation to capital invested. Return on assets , return on net assets , return on capital and return on invested capital are similar measures with variations on how “investment” is defined.Marketing not only influences net profits but also...
, with simple payback often achieved within one year after installation.
Most systems are usually constructed from 100 to 600 mm (4 to 24 inch) diameter, smooth-walled (so they do not easily trap condensation moisture and mold), rigid or semi-rigid plastic, plastic-coated metal pipes or plastic pipes coated with inner antimicrobial layers, buried 1.5 to 3 m (5 to 10 ft) underground where the ambient earth temperature is typically 10 to 23 °C (50-73 °F ) all year round in the temperate latitudes where most humans live. Ground temperature becomes more stable with depth.
Smaller diameter tubes require more energy to move the air and have less earth contact surface area. Larger tubes permit a slower airflow, which also yields more efficient energy transfer and permits much higher volumes to be transferred, permitting more air exchanges in a shorter time period, when, for example, you want to clear the building of objectionable odors or smoke. It is more efficient to pull air through a long tube than to push it with a fan. A solar chimney
Solar chimney
A solar chimney — often referred to as a thermal chimney — is a way of improving the natural ventilation of buildings by using convection of air heated by passive solar energy...
can use natural convection (warm air rising) to create a vacuum to draw filtered passive cooling tube air through the largest diameter cooling tubes. Natural convection may be slower than using a solar-powered fan. Sharp 90-degree angles should be avoided in the construction of the tube - two 45-degree bends produce less-turbulent, more efficient air flow. While smooth-wall tubes are more efficient in moving the air, they are less efficient in transferring energy.
There are three configurations, a closed loop design, an open 'fresh air' system or a combination:
- Closed loop system: Air from inside the home or structure is blown through a U-shaped loop(s) of typically 30 to 150 m (100 to 500 ft) of tube(s) where it is moderated to near earth temperature before returning to be distributed via ductwork throughout the home or structure. The closed loop system can be more effective (during air temperature extremes) than an open system, since it cools and recools the same air.
- Open system: outside air is drawn from a filtered air intake (Minimum Efficiency Reporting ValueMinimum Efficiency Reporting ValueMinimum efficiency reporting value, commonly known as MERV rating is a measurement scale designed in 1987 by the American Society of Heating, Refrigerating and Air-Conditioning Engineers to rate the effectiveness of air filters...
MERV 8+ air filter is recommended). The cooling tubes are typically 30 m (100 ft) long (or more) of straight tube into the home. An open system combined with energy recovery ventilation can be nearly as efficient (80-95%) as a closed loop, and ensures that entering fresh air is filtered and tempered.
- Combination system: This can be constructed with dampers that allow either closed or open operation, depending on fresh air ventilation requirements. Such a design, even in closed loop mode, could draw a quantity of fresh air when an air pressure drop is created by a solar chimneySolar chimneyA solar chimney — often referred to as a thermal chimney — is a way of improving the natural ventilation of buildings by using convection of air heated by passive solar energy...
, clothes dryer, fireplace, kitchen or bathroom exhaust vents. It is better to draw in filtered passive cooling tube air than unconditioned outside air.
Single-pass earth air heat exchangers offer the potential for indoor air quality improvement over conventional systems by providing an increased supply of outdoor air. In some configurations of single-pass systems, a continuous supply of outdoor air is provided. This type of system would usually include one or more ventilation heat recovery units.
Safety
If humidity and associated mold colonization is not addressed in system design, occupants may face health risks. At some sites, the humidity in the earth tubes may be controlled simply by passive drainage if the water table is sufficiently deep and the soil has relatively high permeability. In situations where passive drainage is not feasible or needs to be augmented for further moisture reduction, active (dehumidifier) or passive (desiccant) systems may treat the air stream.Formal research indicates that earth-air heat exchangers reduce building ventilation air pollution. Rabindra (2004) states, “The tunnel [earth-Air heat exchanger] is found not to support the growth of bacteria and fungi; rather it is found to reduce the quantity of bacteria and fungi thus making the air safer for humans to inhale. It is therefore clear that the use of EAT [Earth Air Tunnel] not only helps save the energy but also helps reduce the air pollution by reducing bacteria and fungi.” Likewise, Flueckiger (1999) in a study of twelve earth-air heat exchangers varying in design, pipe material, size and age, stated, “This study was performed because of concerns of potential microbial growth in the buried pipes of ground-coupled air systems. The results however demonstrate, that no harmful growth occurs and that the airborne concentrations of viable spores and bacteria, with few exceptions, even decreases after passage through the pipe-system”, and further stated, “Based on these investigations the operation of ground-coupled earth-to-air heat exchangers is acceptable as long as regular controls are undertaken and if appropriate cleaning facilities are available”.
Whether using earth tubes with or without antimicrobial material, it is extremely important that the underground cooling tubes have an excellent condensation drain and be installed at a 2-3 degree grade to ensure the constant removal of condensed water from the tubes. When implementing in a house without a basement on a flat lot, an external condensation tower can be installed at a depth lower than where the tube enters into the house and at a point close to the wall entry. The condensation tower installation requires the added use of a condensate pump in which to remove the water from the tower. For installations in houses with basements, the pipes are graded so that the condensation drain located within the house is at the lowest point. In either installation, the tube must continually slope towards either the condensation tower or the condensation drain. The inner surface of the tube, including all joints must be smooth to aid in the flow and removal of condensate. Corrugated or ribbed tubes and rough interior joints must not be used. Joints connecting the tubes together must be tight enough to prevent water or gas infiltration. In certain geographic areas, it is important that the joints prevent Radon gas infiltration. Porous materials like uncoated concrete tubes cannot be used. Ideally, Earth Tubes with antimicrobial inner layers should be used in installations to inhibit the potential growth of molds and bacteria within the tubes.
Effectiveness
Implementations of earth-air heat exchangers for either partial or full cooling and/or heating of facility ventilation air have had mixed success. The literature is, unfortunately, well populated with over-generalizations about the applicability of these systems - both supportive and unsupportive. A key aspect of earth-air heat exchangers is the passive nature of operation and consideration of the wide variability of conditions in natural systems.Earth-air heat exchangers can be very cost effective in both up-front/capital costs as well as long-term operation and maintenance costs. However, this varies widely depending on the location latitude, altitude, ambient Earth temperature, climatic temperature-and-relative-humidity extremes, solar radiation, water table, soil type (thermal conductivity
Thermal conductivity
In physics, thermal conductivity, k, is the property of a material's ability to conduct heat. It appears primarily in Fourier's Law for heat conduction....
), soil moisture content and the efficiency of the building's exterior envelope design / insulation. Generally, dry-and-low-density soil with little or no ground shade will yield the least benefit, while dense damp soil with considerable shade should perform well. A slow drip watering system may improve thermal performance. Damp soil in contact with the cooling tube conducts heat more efficiently than dry soil.
Earth cooling tubes are much less effective in hot humid climates (like Florida) where the ambient temperature of the earth approaches human comfort temperature. The higher the ambient temperature of the earth, the less effective they are for cooling and dehumidification. However, they can be used to partially cool and dehumidify the replacement fresh air intake for passive-solar thermal buffer zone areas like the laundry room, or a solarium
Solarium
Solarium may refer to:* Similar to a Sunroom, a room built largely of glass to afford exposure to the sun. Solariums have glass roofs , unlike sunrooms...
/ greenhouse, especially those with a hot tub, swim spa, or indoor swimming pool, where warm humid air is exhausted in the summer, and a supply of cooler drier replacement air is desired.
Not all regions and sites are suitable for earth-air heat exchangers. Conditions which may hinder or preclude proper implementation include shallow bedrock, high water table, and insufficient space, among others. In some areas, only cooling or heating may be afforded by earth-air heat exchangers. In these areas, provision for thermal recharge of the ground must especially be considered. In dual function systems (both heating and cooling), the warm season provides ground thermal recharge for the cool season and the cool season provides ground thermal recharge for the warm season, though overtaxing the thermal reservoir must be considered even with dual function systems.
Renata Limited
Renata Limited
Renata Limited , also known as Renata, is one of the top ten pharmaceutical manufacturers in Bangladesh. Renata is engaged in the manufacture and marketing of human pharmaceutical and animal health products. The company also manufactures animal therapeutics and nutrition products...
, a prominent pharmaceutical company in Bangladesh
Bangladesh
Bangladesh , officially the People's Republic of Bangladesh is a sovereign state located in South Asia. It is bordered by India on all sides except for a small border with Burma to the far southeast and by the Bay of Bengal to the south...
, tried out a pilot project trying to find out whether they could use the Earth Air Tunnel technology to complement the conventional air conditioning system. Concrete pipes (total length 60 feet, inner diameter 9 inches, outer diameter 11 inches) were placed at a depth of 9 feet underground and a blower of 1.5 kW rated power was employed. The underground temperature at that depth was found to be around 28°C. The mean velocity of air in the tunnel was about 5 m/s. The Coefficient of Performance (COP) of the underground heat exchanger thus designed was poor ranging from 1.5-3. The results convinced the authorities that in hot and humid climates, it is unwise to implement the concept of Earth-Air heat exchanger. The cooling medium (earth itself) being at a temperature approaching that of the ambient environment happens to be the root cause of the failure of such principles in hot, humid areas (parts of Southeast Asia
Southeast Asia
Southeast Asia, South-East Asia, South East Asia or Southeastern Asia is a subregion of Asia, consisting of the countries that are geographically south of China, east of India, west of New Guinea and north of Australia. The region lies on the intersection of geological plates, with heavy seismic...
, Florida
Florida
Florida is a state in the southeastern United States, located on the nation's Atlantic and Gulf coasts. It is bordered to the west by the Gulf of Mexico, to the north by Alabama and Georgia and to the east by the Atlantic Ocean. With a population of 18,801,310 as measured by the 2010 census, it...
in the U.S.A. etc.). However, investigators from places like Britain
United Kingdom
The United Kingdom of Great Britain and Northern IrelandIn the United Kingdom and Dependencies, other languages have been officially recognised as legitimate autochthonous languages under the European Charter for Regional or Minority Languages...
and Turkey
Turkey
Turkey , known officially as the Republic of Turkey , is a Eurasian country located in Western Asia and in East Thrace in Southeastern Europe...
have reported very encouraging COP
Cop
Cop is a slang term for a police official.Cop or Cops may refer to: - Organizations :* Conference of the Parties, the governing body of the United Nations Framework Convention on Climate Change...
s-well above 20. The underground temperature seems to be of prime importance when planning an Earth-Air heat exchanger.
Environmental impact
In the context of today's diminishing fossil fuelFossil fuel
Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years...
reserves, increasing electrical costs, air pollution
Air pollution
Air pollution is the introduction of chemicals, particulate matter, or biological materials that cause harm or discomfort to humans or other living organisms, or cause damage to the natural environment or built environment, into the atmosphere....
and global warming
Global warming
Global warming refers to the rising average temperature of Earth's atmosphere and oceans and its projected continuation. In the last 100 years, Earth's average surface temperature increased by about with about two thirds of the increase occurring over just the last three decades...
, properly-designed earth cooling tubes offer a sustainable alternative to reduce or eliminate the need for conventional compressor-based air conditioning systems, in non-tropical climates. They also provide the added benefit of controlled, filtered, temperate fresh air intake, which is especially valuable in tight, well-weatherized, efficient building envelopes.
Water to earth
An alternative to the earth-to-air heat exchanger is the "water" to earth heat exchanger. This is typically similar to a geothermal heat pump tubing embedded horizontally in the soil (or could be a vertical sonde) to a similar depth of the earth-air heat exchanger. It uses approximately double the length of pipe of 35 mm diameter, e.g., around 80 m compared to an EAHX of 40 m. A heat exchanger coil is placed before the air inlet of the heat recovery ventilator. Typically a brine liquid (heavily salted water) is used as the heat exchanger fluid.Many European installations are now using this setup due to the ease of installation. No fall or drainage point is required and it is safe because of the reduced risk from mold.
See also
- Passive coolingPassive coolingPassive cooling refers to technologies or design features used to cool buildings without power consumption, such as those technologies discussed in the Passive house project.-Passive cooling:...
- Solar air conditioningSolar air conditioningSolar air conditioning refers to any air conditioning system that uses solar power.This can be done through passive solar, solar thermal energy conversion and photovoltaic conversion . The U.S...
- Solar chimneySolar chimneyA solar chimney — often referred to as a thermal chimney — is a way of improving the natural ventilation of buildings by using convection of air heated by passive solar energy...
- HVACHVACHVAC refers to technology of indoor or automotive environmental comfort. HVAC system design is a major subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer...
- Renewable energyRenewable energyRenewable energy is energy which comes from natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are renewable . About 16% of global final energy consumption comes from renewables, with 10% coming from traditional biomass, which is mainly used for heating, and 3.4% from...
- Geothermal powerGeothermal powerGeothermal energy is thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. Earth's geothermal energy originates from the original formation of the planet and from radioactive decay of minerals...
- Geothermal heat pump
- Earth shelteringEarth shelteringEarth sheltering is the architectural practice of using earth against building walls for external thermal mass, to reduce heat loss, and to easily maintain a steady indoor air temperature...