Frazil ice
Encyclopedia
Frazil ice is a collection of loose, randomly oriented needle-shaped ice
crystals in water. It resembles slush
and has the appearance of being slightly oily when seen on the surface of water. It sporadically forms in open, turbulent, supercooled
water, which means that it usually forms in rivers, lakes and oceans, on clear nights when the weather is colder, and air temperature reaches –6°C or lower. Frazil ice is the first stage in the formation of sea ice
.
, it can be carried to the bottom very easily.
Through a process called secondary nucleation (see crystallization
), the crystals quickly increase in number, and because of its supercooled surrounding, the crystals will continue to grow. Sometimes, the concentration is estimated to reach one million crystals per cubic meter.
As the crystals grow in number and size, the frazil ice will begin to adhere to objects in the water, especially if the objects themselves are at a temperature below water’s freezing point. The accumulation of frazil ice often causes flood
ing and/or damage to various water objects, such as trash racks. And since frazil ice is found below the surface of water, it makes it very difficult for humans to detect its formation.
Usually what happens is the frazil ice accumulates on the upstream
side of objects and sticks to them. The frazil ice accumulates as more gets deposited. The growth will extend upstream and increase in width until the point where the frazil ice accumulations bridge together and block the water. As more and more water flows against this block, the pressure on the upstream side increases and causes a differential pressure (difference in pressure from the upstream side and the downstream side). This will cause the growth of the bridge to extend downstream. Once this happens, flooding and damage is likely unless otherwise prevented and/or controlled.
Frazil ice has also been demonstrated to form beneath temperate (or "warm-based") glaciers as water flows quickly uphill and supercools due to a rapid loss of pressure. This "glaciohydraulic supercooling" process forms an open network of platy ice crystals that can effectively trap silt from the sediment-laden water that flows beneath glaciers and ice sheets. Subsequent freezing and recrystallization can result in a layer of sediment-rich ice at the base of the glacier which, upon melting at the terminus, can result in significant accumulation of sediment in moraine
s. This phenomenon has been verified by elevated concentrations of bomb-produced tritium in the basal ice of several glaciers (signifying young ice) and the observation of rapid growth of ice crystals around water discharge vents at glacier termini.
s and ice booms, installing water jets to break up any accumulation that might occur, and using manual labour to rake away the accumulation. This final method is often not preferred because of high labour costs, cold, wet and late night working conditions. Back flushing is another technology that uses the idea of cancelling out the differential pressure caused by the frazil ice accumulation. This technology creates a high pressure on the downstream side of objects to reverse the differential pressure.
Ice
Ice is water frozen into the solid state. Usually ice is the phase known as ice Ih, which is the most abundant of the varying solid phases on the Earth's surface. It can appear transparent or opaque bluish-white color, depending on the presence of impurities or air inclusions...
crystals in water. It resembles slush
Slush (snow)
Slush, also called slush ice, is a slurry mixture of small ice crystals and liquid water. In the natural environment, slush forms as ice or snow melts. This often mixes with dirt and other materials, resulting in a gray or muddy brown color...
and has the appearance of being slightly oily when seen on the surface of water. It sporadically forms in open, turbulent, supercooled
Supercooling
Supercooling, also known as undercooling, is the process of lowering the temperature of a liquid or a gas below its freezing point without it becoming a solid....
water, which means that it usually forms in rivers, lakes and oceans, on clear nights when the weather is colder, and air temperature reaches –6°C or lower. Frazil ice is the first stage in the formation of sea ice
Sea ice
Sea ice is largely formed from seawater that freezes. Because the oceans consist of saltwater, this occurs below the freezing point of pure water, at about -1.8 °C ....
.
Formation
When the water surface begins to lose heat rapidly, the water becomes supercooled. Turbulence, caused by strong winds or flow from a river, will mix the supercooled water throughout its entire depth. The supercooled water will already be encouraging the formation of small ice crystals (frazil ice) and the crystals get taken to the bottom of the water body. Ice generally floats, but due to frazil ice’s ineffective buoyancyBuoyancy
In physics, buoyancy is a force exerted by a fluid that opposes an object's weight. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus a column of fluid, or an object submerged in the fluid, experiences greater pressure at the bottom of the...
, it can be carried to the bottom very easily.
Through a process called secondary nucleation (see crystallization
Crystallization
Crystallization is the process of formation of solid crystals precipitating from a solution, melt or more rarely deposited directly from a gas. Crystallization is also a chemical solid–liquid separation technique, in which mass transfer of a solute from the liquid solution to a pure solid...
), the crystals quickly increase in number, and because of its supercooled surrounding, the crystals will continue to grow. Sometimes, the concentration is estimated to reach one million crystals per cubic meter.
As the crystals grow in number and size, the frazil ice will begin to adhere to objects in the water, especially if the objects themselves are at a temperature below water’s freezing point. The accumulation of frazil ice often causes flood
Flood
A flood is an overflow of an expanse of water that submerges land. The EU Floods directive defines a flood as a temporary covering by water of land not normally covered by water...
ing and/or damage to various water objects, such as trash racks. And since frazil ice is found below the surface of water, it makes it very difficult for humans to detect its formation.
Usually what happens is the frazil ice accumulates on the upstream
Source (river or stream)
The source or headwaters of a river or stream is the place from which the water in the river or stream originates.-Definition:There is no universally agreed upon definition for determining a stream's source...
side of objects and sticks to them. The frazil ice accumulates as more gets deposited. The growth will extend upstream and increase in width until the point where the frazil ice accumulations bridge together and block the water. As more and more water flows against this block, the pressure on the upstream side increases and causes a differential pressure (difference in pressure from the upstream side and the downstream side). This will cause the growth of the bridge to extend downstream. Once this happens, flooding and damage is likely unless otherwise prevented and/or controlled.
Frazil ice has also been demonstrated to form beneath temperate (or "warm-based") glaciers as water flows quickly uphill and supercools due to a rapid loss of pressure. This "glaciohydraulic supercooling" process forms an open network of platy ice crystals that can effectively trap silt from the sediment-laden water that flows beneath glaciers and ice sheets. Subsequent freezing and recrystallization can result in a layer of sediment-rich ice at the base of the glacier which, upon melting at the terminus, can result in significant accumulation of sediment in moraine
Moraine
A moraine is any glacially formed accumulation of unconsolidated glacial debris which can occur in currently glaciated and formerly glaciated regions, such as those areas acted upon by a past glacial maximum. This debris may have been plucked off a valley floor as a glacier advanced or it may have...
s. This phenomenon has been verified by elevated concentrations of bomb-produced tritium in the basal ice of several glaciers (signifying young ice) and the observation of rapid growth of ice crystals around water discharge vents at glacier termini.
Control
There are several ways to control frazil ice build up. They include suppression, mechanical control, thermal control, vibration, prior thought and damage mitigation.Suppression
Frazil ice forms in supercooled water which occurs because the surface water loses heat to cooler air above. Suppression is the idea of ‘insulating’ the surface water with an intact, stable ice cover. The ice cover will prevent heat loss and warm the supercooled water that might have already formed. Sufficient area needs to be covered in order for this method to work, but it is still unknown what is meant by sufficient.Mechanical control
These methods include stabilizing freeze without restricting water flow, such as implementing weirWeir
A weir is a small overflow dam used to alter the flow characteristics of a river or stream. In most cases weirs take the form of a barrier across the river that causes water to pool behind the structure , but allows water to flow over the top...
s and ice booms, installing water jets to break up any accumulation that might occur, and using manual labour to rake away the accumulation. This final method is often not preferred because of high labour costs, cold, wet and late night working conditions. Back flushing is another technology that uses the idea of cancelling out the differential pressure caused by the frazil ice accumulation. This technology creates a high pressure on the downstream side of objects to reverse the differential pressure.