
Algebraically closed group
    
    Encyclopedia
    
        In mathematics
, in the realm of group theory
, a group
 
 is algebraically closed if any finite set of equations and inequations that "make sense" in 
 already have a solution in 
. This idea will be made precise later in the article.
 of a group 
 satisfying the conditions (equations and inequations):
Then it is easy to see that this is impossible because the first two equations imply
. In this case we say the set of conditions are inconsistent with 
. (In fact this set of conditions are inconsistent with any group whatsoever.)
Now suppose
 is the group with the multiplication table:
Then the conditions:
have a solution in
, namely 
.
However the conditions:
Do not have a solution in
, as can easily be checked.
However if we extend the group
 to the group 
 with multiplication table:
Then the conditions have two solutions, namely
 and 
.
Thus there are three possibilities regarding such conditions:
It is reasonable to ask whether there are any groups
 such that whenever a set of conditions like these have a solution at all, they have a solution in 
 itself? The answer turns out to be "yes", and we call such groups algebraically closed groups.
If
 is a group and 
 is the free group
on countably many generators, then by a finite set of equations and inequations with coefficients in
 we mean a pair of subsets 
 and 
 of 
 the free product
of
 and 
.
This formalizes the notion of a set of equations and inequations consisting of variables
 and elements 
 of 
. The set 
 represents equations like:
The set
 represents inequations like
By a solution in
 to this finite set of equations and inequations, we mean a homomorphism 
, such that 
 for all 
 and 
 for all 
. Where 
 is the unique homomorphism 
 that equals 
 on 
 and is the identity on 
.
This formalizes the idea of substituting elements of
 for the variables to get true identities and inidentities. In the example the substitutions 
 and 
 yield:
We say the finite set of equations and inequations is consistent with
 if we can solve them in a "bigger" group 
. More formally:
The equations and inequations are consistent with
 if there is a group
 and an embedding 
 such that the finite set of  equations and inequations 
 and 
 has a solution in 
. Where 
 is the unique homomorphism 
 that equals 
 on 
 and is the identity on 
.
Now we formally define the group
 to be algebraically closed if every finite set of equations and inequations that has coefficients in 
 and is consistent with 
 has a solution in 
.
The proofs of these results are, in general very complex. However a sketch of the proof that a countable group
 can be embedded in an algebraically closed group follows.
First we embed
 in a countable group 
 with the property that every finite set of equations with coefficients in 
 that is consistent in 
 has a solution in 
 as follows:
There are only countably many finite sets of equations and inequations with coefficients in
. Fix an enumeration 
 of them. Define groups 
 inductively by:
Mathematics
Mathematics  is the study of quantity, space, structure, and change.  Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...
, in the realm of group theory
Group theory
In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces can all be seen as groups endowed with additional operations and...
, a group
Group (mathematics)
In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines any two of its elements to form a third element. To qualify as a group, the set and the operation must satisfy a few conditions called group axioms, namely closure, associativity, identity...
 is algebraically closed if any finite set of equations and inequations that "make sense" in 
 already have a solution in 
. This idea will be made precise later in the article.Informal discussion
Suppose we wished to find an element
 of a group 
 satisfying the conditions (equations and inequations):Then it is easy to see that this is impossible because the first two equations imply
. In this case we say the set of conditions are inconsistent with 
. (In fact this set of conditions are inconsistent with any group whatsoever.)![]()  | 
![]()  | 
![]()  | 
![]()  | 
|---|---|---|
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
Now suppose
 is the group with the multiplication table:Then the conditions:
have a solution in
, namely 
.However the conditions:
Do not have a solution in
, as can easily be checked.![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
|---|---|---|---|---|
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
However if we extend the group
 to the group 
 with multiplication table:Then the conditions have two solutions, namely
 and 
.Thus there are three possibilities regarding such conditions:
-  They may be inconsistent with 
 and have no solution in any extension of 
. -  They may have a solution in 
. -  They may have no solution in 
 but nevertheless have a solution in some extension 
 of 
. 
It is reasonable to ask whether there are any groups
 such that whenever a set of conditions like these have a solution at all, they have a solution in 
 itself? The answer turns out to be "yes", and we call such groups algebraically closed groups.Formal definition of an algebraically closed group
We first need some preliminary ideas.If
 is a group and 
 is the free groupFree group
In mathematics, a group G is called free if there is a subset S of G such that any element of G can be written in one and only one way as a product of finitely many elements of S and their inverses...
on countably many generators, then by a finite set of equations and inequations with coefficients in
 we mean a pair of subsets 
 and 
 of 
 the free productFree product
In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group G ∗ H.  The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “most general” group having these properties...
of
 and 
.This formalizes the notion of a set of equations and inequations consisting of variables
 and elements 
 of 
. The set 
 represents equations like:
The set
 represents inequations like
By a solution in
 to this finite set of equations and inequations, we mean a homomorphism 
, such that 
 for all 
 and 
 for all 
. Where 
 is the unique homomorphism 
 that equals 
 on 
 and is the identity on 
.This formalizes the idea of substituting elements of
 for the variables to get true identities and inidentities. In the example the substitutions 
 and 
 yield:
We say the finite set of equations and inequations is consistent with
 if we can solve them in a "bigger" group 
. More formally:The equations and inequations are consistent with
 if there is a group
 and an embedding 
 such that the finite set of  equations and inequations 
 and 
 has a solution in 
. Where 
 is the unique homomorphism 
 that equals 
 on 
 and is the identity on 
.Now we formally define the group
 to be algebraically closed if every finite set of equations and inequations that has coefficients in 
 and is consistent with 
 has a solution in 
.Known Results
It is difficult to give concrete examples of algebraically closed groups as the following results indicate:- Every countable group can be embedded in a countable algebraically closed group.
 -  Every algebraically closed group is simpleSimple groupIn mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, a normal subgroup and the quotient group, and the process can be repeated...
. -  No algebraically closed group is finitely generatedFinitely generatedIn mathematics, finitely generated may refer to:* Finitely generated group* Finitely generated monoid* Finitely generated abelian group* Finitely generated module* Finitely generated ideal* Finitely generated algebra* Finitely generated space...
. -  An algebraically closed group cannot be recursively presentedPresentation of a groupIn mathematics, one method of defining a group is by a presentation. One specifies a set S of generators so that every element of the group can be written as a product of powers of some of these generators, and a set R of relations among those generators...
. -  A finitely generated group has solvable word problemWord problem for groupsIn mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group G is the algorithmic problem of deciding whether two words in the generators represent the same element...
if and only if it can embedded in every algebraically closed group. 
The proofs of these results are, in general very complex. However a sketch of the proof that a countable group
 can be embedded in an algebraically closed group follows.First we embed
 in a countable group 
 with the property that every finite set of equations with coefficients in 
 that is consistent in 
 has a solution in 
 as follows:There are only countably many finite sets of equations and inequations with coefficients in
. Fix an enumeration 
 of them. Define groups 
 inductively by:- 

Now let:
Now iterate this construction to get a sequence of groups
 and let:
Then
 is a countable group containing 
. It is algebraically closed because any finite set of equations and inequations that is consistent with 
 must have coefficients in some 
 and so must have a solution in 
.
        
    - 
 
 

























































