Theory of impetus
Encyclopedia
The theory of impetus was an auxiliary or secondary theory of Aristotelian dynamics
, put forth initially to explain projectile motion
against gravity. It was introduced by Jean Buridan
(14th century), which became an ancestor to the concepts of inertia
, momentum
and acceleration
in classical mechanics
.
partly accepted Aristotle's theory that "continuation of motion depends on continued action of a force," but modified it to include his idea that the hurled body acquires a motive power or inclination for forced movement from the agent producing the initial motion and that this power secures the continuation of such motion. However, he argued that this impressed virtue was temporary; that it was a self-expending inclination, and thus the violent motion produced comes to an end, changing back into natural motion.
discussed Philoponus' theory in The Book of Healing
,in Physics IV.14 he says;
In the 12th century, Hibat Allah Abu'l-Barakat al-Baghdaadi
adopted and modified Avicenna's theory on projectile motion
. In his Kitab al-Mu'tabar, Abu'l-Barakat stated that the mover imparts a violent inclination (mayl qasri) on the moved and that this diminishes as the moving object distances itself from the mover. Jean Buridan
and Albert of Saxony
later refer to Abu'l-Barakat in explaining that the acceleration of a falling body is a result of its increasing impetus.
postulated the notion of motive force, which he named impetus. Buridan gives his theory a mathematical value: impetus = weight x velocity
Buridan's pupil Dominicus de Clavasio in his 1357 De Caelo, as follows:
Buridan's position was that a moving object would only be arrested by the resistance of the air and the weight of the body which would oppose its impetus. Buridan also maintained that impetus was proportional to speed; thus, his initial idea of impetus was similar in many ways to the modern concept of momentum
. Despite the obvious similarities to more modern idea of momentum, Buridan saw his theory as only a modification to Aristotle's basic philosophy, maintaining many other peripatetic views, including the belief that there was still a fundamental difference between an object in motion and an object at rest. Buridan also maintained that impetus could be not only linear, but also circular in nature, causing objects (such as celestial bodies) to move in a circle.
In order to dispense with the need for positing continually moving intelligences or souls in the celestial spheres, which he pointed out are not posited by the Bible, he applied impetus theory to their endless rotation by extension of a terrestrial example of its application to rotary motion in the form of a rotating millwheel that continues rotating for a long time after the originally propelling hand is withdrawn, driven by the impetus impressed within it. He wrote on the celestial impetus of the spheres as follows:
However, having discounted the possibility of any resistance either due to a contrary inclination to move in any opposite direction or due to any external resistance, in concluding their impetus was therefore not corrupted by any resistance Buridan also discounted any inherent resistance to motion in the form of an inclination to rest within the spheres themselves, such as the inertia posited by Averroes and Aquinas. For otherwise that resistance would destroy their impetus, as the anti-Duhemian historian of science Annaliese Maier maintained the Parisian impetus dynamicists were forced to conclude because of their belief in an inherent inclinatio ad quietem or inertia in all bodies. But in fact contrary to that inertial variant of Aristotelian dynamics, according to Buridan prime matter does not resist motion. But this then raised the question within Aristotelian dynamics of why the motive force of impetus does not therefore move the spheres with infinite speed.
One impetus dynamics answer seemed to be that it was a secondary kind of motive force that produced uniform motion rather than infinite speed, just as it seemed Aristotle had supposed the spheres' moving souls do, or rather than producing uniformly accelerated motion like the primary force of gravity did by producing constantly increasing amounts of impetus. However in his Treatise on the heavens and the world in which the heavens are moved by inanimate inherent mechanical forces, Buridan's pupil Oresme offered an alternative Thomist
inertial response to this problem in that he did posit a resistance to motion inherent in the heavens (i.e. in the spheres), but which is only a resistance to acceleration beyond their natural speed, rather than to motion itself, and was thus a tendency to preserve their natural speed. This analysis of the dynamics of the motions of the spheres seems to have been a first anticipation of Newton's revised conception of inertia as only resisting accelerated motion but not resisting uniform motion.
Buridan's thought was followed up by his pupil Albert of Saxony
(1316–1390) and the Oxford Calculators
. Their work in turn was elaborated by Nicole Oresme who pioneered the practice of demonstrating laws of motion in the form of graphs.
The tunnel experiment and oscillatory motion
The Buridan impetus theory developed one of the most important thought-experiments in the history of science, namely the so-called 'tunnel-experiment', so important because it brought oscillatory and pendulum motion within the pale of dynamical analysis and understanding in the science of motion for the very first time and thereby also established one of the important principles of classical mechanics. The pendulum was to play a crucially important role in the development of mechanics in the 17th century, and so more generally was the axiomatic principle of Galilean, Huygenian and Leibnizian dynamics to which the tunnel experiment also gave rise, namely that a body rises to the same height from which it has fallen, a principle of gravitational potential energy. As Galileo Galilei
expressed this fundamental principle of his dynamics in his 1632 Dialogo:
"The heavy falling body acquires sufficient impetus [in falling from a given height] to carry it back to an equal height."
This imaginary experiment predicted that a cannonball dropped down a tunnel going straight through the centre of the Earth and out the other side would go past the centre and rise on the opposite surface to the same height from which it had first fallen on the other side, driven upwards past the centre by the gravitationally created impetus it had continually accumulated in falling downwards to the centre. This impetus would require a violent motion correspondingly rising to the same height past the centre for the now opposing force of gravity to destroy it all in the same distance which it had previously required to create it, and whereupon at this turning point the ball would then descend again and oscillate back and forth between the two opposing surfaces about the centre ad infinitum in principle. Thus the tunnel experiment provided the first dynamical model of oscillatory motion, albeit a purely imaginary one in the first instance, and specifically in terms of A-B impetus dynamics.
However, this thought-experiment was then most cunningly applied to the dynamical explanation of a real world oscillatory motion, namely that of the pendulum, as follows. The oscillating motion of the cannonball was dynamically assimilated to that of a pendulum bob by imagining it to be attached to the end of an immensely cosmologically long cord suspended from the vault of the fixed stars centred on the Earth, whereby the relatively short arc of its path through the enormously distant Earth was practically a straight line along the tunnel. Real world pendula were then conceived of as just micro versions of this 'tunnel pendulum', the macro-cosmological paradigmatic dynamical model of the pendulum, but just with far shorter cords and with their bobs oscillating above the Earth's surface in arcs corresponding to the tunnel inasmuch as their oscillatory mid-point was dynamically assimilated to the centre of the tunnel as the centre of the Earth.
Hence by means of such impressive literally 'lateral thinking', rather than the dynamics of pendulum motion being conceived of as the bob inexplicably somehow falling downwards compared to the vertical to a gravitationally lowest point and then inexplicably being pulled back up again on the same upper side of that point, rather it was its lateral horizontal motion that was conceived of as a case of gravitational free-fall followed by violent motion in a recurring cycle, with the bob repeatedly travelling through and beyond the motion's vertically lowest but horizontally middle point that stood proxy for the centre of the Earth in the tunnel pendulum. So on this imaginative lateral gravitational thinking outside the box the lateral motions of the bob first towards and then away from the normal in the downswing and upswing become lateral downward and upward motions in relation to the horizontal rather than to the vertical.
Thus whereas the orthodox Aristotelians could only see pendulum motion as a dynamical anomaly, as inexplicably somehow 'falling to rest with difficulty' as historian and philosopher of science Thomas Kuhn
put it in his 1962 The Structure of Scientific Revolutions, on the impetus theory's novel analysis it was not falling with any dynamical difficulty at all in principle, but was rather falling in repeated and potentially endless cycles of alternating downward gravitationally natural motion and upward gravitationally violent motion. Hence, for example, Galileo was eventually to appeal to pendulum motion to demonstrate that the speed of gravitational free-fall is the same for all unequal weights precisely by virtue of dynamically modelling pendulum motion in this manner as a case of cyclically repeated gravitational free-fall along the horizontal in principle.
In fact the tunnel experiment, and hence pendulum motion, was an imaginary crucial experiment in favour of impetus dynamics against both orthodox Aristotelian dynamics without any auxiliary impetus theory, and also against Aristotelian dynamics with its H-P variant. For according to the latter two theories the bob cannot possibly pass beyond the normal. In orthodox Aristotelian dynamics there is no force to carry the bob upwards beyond the centre in violent motion against its own gravity that carries it to the centre, where it stops. And when conjoined with the Philoponus auxiliary theory, in the case where the cannonball is released from rest, again there is no such force because either all the initial upward force of impetus originally impressed within it to hold it in static dynamical equilibrium has been exhausted, or else if any remained it would be acting in the opposite direction and combine with gravity to prevent motion through and beyond the centre. Nor were the cannonball to be positively hurled downwards, and thus with a downward initial impetus, could it possibly result in an oscillatory motion. For although it could then possibly pass beyond the centre, it could never return to pass through it and rise back up again. For dynamically in this case although it would be logically possible for it to pass beyond the centre if when it reached it some of the constantly decaying downward impetus remained and still sufficiently much to be stronger than gravity to push it beyond the centre and upwards again, nevertheless when it eventually then became weaker than gravity, whereupon the ball would then be pulled back towards the centre by its gravity, it could not then pass beyond the centre to rise up again, because it would have no force directed against gravity to overcome it. For any possibly remaining impetus would be directed 'downwards' towards the centre, that is, in the same direction in which it was originally created.
Thus pendulum motion was dynamically impossible for both orthodox Aristotelian dynamics and also for H-P impetus dynamics on this 'tunnel model' analogical reasoning. But it was predicted by the impetus theory's tunnel prediction precisely because that theory posited that a continually accumulating downwards force of impetus directed towards the centre is acquired in natural motion, sufficient to then carry it upwards beyond the centre against gravity, and rather than only having an initially upwards force of impetus away from the centre as in the theory of natural motion. So the tunnel experiment constituted a crucial experiment between three alternative theories of natural motion.
On this analysis then impetus dynamics was to be preferred if the Aristotelian science of motion was to incorporate a dynamical explanation of pendulum motion. And indeed it was also to be preferred more generally if it was to explain other oscillatory motions, such as the to and fro vibrations around the normal of musical strings in tension, such as those of a zither, lute or guitar. For here the analogy made with the gravitational tunnel experiment was that the tension in the string pulling it towards the normal played the role of gravity, and thus when plucked i.e. pulled away from the normal and then released, this was the equivalent of pulling the cannonball to the Earth's surface and then releasing it. Thus the musical string vibrated in a continual cycle of the alternating creation of impetus towards the normal and its destruction after passing through the normal until this process starts again with the creation of fresh 'downward' impetus once all the 'upward' impetus has been destroyed.
This positing of a dynamical family resemblance of the motions of pendula and vibrating strings with the paradigmatic tunnel-experiment, the original mother of all oscillations in the history of dynamics, was one of the greatest imaginative developments of medieval Aristotelian dynamics in its increasing repertoire of dynamical models of different kinds of motion.
Shortly before Galileo's theory of impetus, Giambattista Benedetti
modified the growing theory of impetus to involve linear motion alone:
Benedetti cites the motion of a rock in a sling as an example of the inherent linear motion of objects, forced into circular motion.
Aristotelian physics
Aristotelian Physics the natural sciences, are described in the works of the Greek philosopher Aristotle . In the Physics, Aristotle established general principles of change that govern all natural bodies; both living and inanimate, celestial and terrestrial—including all motion, change in respect...
, put forth initially to explain projectile motion
Projectile motion
The motion in which a body is thrown or projected is called Projectile motion.The path followed by a projectile is called its trajectory, which is directly influenced by gravity....
against gravity. It was introduced by Jean Buridan
Jean Buridan
Jean Buridan was a French priest who sowed the seeds of the Copernican revolution in Europe. Although he was one of the most famous and influential philosophers of the late Middle Ages, he is today among the least well known...
(14th century), which became an ancestor to the concepts of inertia
Inertia
Inertia is the resistance of any physical object to a change in its state of motion or rest, or the tendency of an object to resist any change in its motion. It is proportional to an object's mass. The principle of inertia is one of the fundamental principles of classical physics which are used to...
, momentum
Momentum
In classical mechanics, linear momentum or translational momentum is the product of the mass and velocity of an object...
and acceleration
Acceleration
In physics, acceleration is the rate of change of velocity with time. In one dimension, acceleration is the rate at which something speeds up or slows down. However, since velocity is a vector, acceleration describes the rate of change of both the magnitude and the direction of velocity. ...
in classical mechanics
Classical mechanics
In physics, classical mechanics is one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces...
.
The problem of projectile motion in Aristotelian dynamics
Aristotelian dynamics presupposes that all motion against resistance requires a conjoined mover continuously to supply motive force. In cases of projectile motion, however, there is no apparent mover to counteract gravity. To resolve the problem of continued motion after contact is lost with the original projector, Aristotle tentatively suggested the auxiliary theory that the propellant is the medium through which the projectile travels. The medium was postulated to be endowed with an incorporeal motive force impressed within its parts by the original projector. In the theories described below, the motive force or "impetus" is instead regarded to be impressed directly within the projectile itself by the original projector and is not mediated by the medium through which the projectile moves.Philoponan theory
In the 6th century, John PhiloponusJohn Philoponus
John Philoponus , also known as John the Grammarian or John of Alexandria, was a Christian and Aristotelian commentator and the author of a considerable number of philosophical treatises and theological works...
partly accepted Aristotle's theory that "continuation of motion depends on continued action of a force," but modified it to include his idea that the hurled body acquires a motive power or inclination for forced movement from the agent producing the initial motion and that this power secures the continuation of such motion. However, he argued that this impressed virtue was temporary; that it was a self-expending inclination, and thus the violent motion produced comes to an end, changing back into natural motion.
The Avicennan theory
In the 11th century, AvicennaAvicenna
Abū ʿAlī al-Ḥusayn ibn ʿAbd Allāh ibn Sīnā , commonly known as Ibn Sīnā or by his Latinized name Avicenna, was a Persian polymath, who wrote almost 450 treatises on a wide range of subjects, of which around 240 have survived...
discussed Philoponus' theory in The Book of Healing
The Book of Healing
The Book of Healing is a scientific and philosophical encyclopedia written by Abū Alī ibn Sīnā from Asfahana, near Bukhara in Greater Persia. Despite its English title, it is not in fact concerned with medicine...
,in Physics IV.14 he says;
In the 12th century, Hibat Allah Abu'l-Barakat al-Baghdaadi
Hibat Allah Abu'l-Barakat al-Baghdaadi
Abu'l-Barakāt Hibat Allah ibn Malkā al-Baghdādī was an Islamic philosopher and physician of Jewish-Arab descent from Baghdad, Iraq. Abu'l-Barakāt, an older contemporary and father-in-law of Maimonides, was originally known by his Hebrew birth name Nathanel before his conversion from Judaism to...
adopted and modified Avicenna's theory on projectile motion
Projectile motion
The motion in which a body is thrown or projected is called Projectile motion.The path followed by a projectile is called its trajectory, which is directly influenced by gravity....
. In his Kitab al-Mu'tabar, Abu'l-Barakat stated that the mover imparts a violent inclination (mayl qasri) on the moved and that this diminishes as the moving object distances itself from the mover. Jean Buridan
Jean Buridan
Jean Buridan was a French priest who sowed the seeds of the Copernican revolution in Europe. Although he was one of the most famous and influential philosophers of the late Middle Ages, he is today among the least well known...
and Albert of Saxony
Albert of Saxony (philosopher)
Albert of Saxony was a German philosopher known for his contributions to logic and physics...
later refer to Abu'l-Barakat in explaining that the acceleration of a falling body is a result of its increasing impetus.
Buridan impetus
In the 14th century, Jean BuridanJean Buridan
Jean Buridan was a French priest who sowed the seeds of the Copernican revolution in Europe. Although he was one of the most famous and influential philosophers of the late Middle Ages, he is today among the least well known...
postulated the notion of motive force, which he named impetus. Buridan gives his theory a mathematical value: impetus = weight x velocity
Buridan's pupil Dominicus de Clavasio in his 1357 De Caelo, as follows:
- "When something moves a stone by violence, in addition to imposing on it an actual force, it impresses in it a certain impetus. In the same way gravity not only gives motion itself to a moving body, but also gives it a motive power and an impetus, ...".
Buridan's position was that a moving object would only be arrested by the resistance of the air and the weight of the body which would oppose its impetus. Buridan also maintained that impetus was proportional to speed; thus, his initial idea of impetus was similar in many ways to the modern concept of momentum
Momentum
In classical mechanics, linear momentum or translational momentum is the product of the mass and velocity of an object...
. Despite the obvious similarities to more modern idea of momentum, Buridan saw his theory as only a modification to Aristotle's basic philosophy, maintaining many other peripatetic views, including the belief that there was still a fundamental difference between an object in motion and an object at rest. Buridan also maintained that impetus could be not only linear, but also circular in nature, causing objects (such as celestial bodies) to move in a circle.
In order to dispense with the need for positing continually moving intelligences or souls in the celestial spheres, which he pointed out are not posited by the Bible, he applied impetus theory to their endless rotation by extension of a terrestrial example of its application to rotary motion in the form of a rotating millwheel that continues rotating for a long time after the originally propelling hand is withdrawn, driven by the impetus impressed within it. He wrote on the celestial impetus of the spheres as follows:
- "God, when He created the world, moved each of the celestial orbs as He pleased, and in moving them he impressed in them impetuses which moved them without his having to move them any more...And those impetuses which he impressed in the celestial bodies were not decreased or corrupted afterwards, because there was no inclination of the celestial bodies for other movements. Nor was there resistance which would be corruptive or repressive of that impetus."
However, having discounted the possibility of any resistance either due to a contrary inclination to move in any opposite direction or due to any external resistance, in concluding their impetus was therefore not corrupted by any resistance Buridan also discounted any inherent resistance to motion in the form of an inclination to rest within the spheres themselves, such as the inertia posited by Averroes and Aquinas. For otherwise that resistance would destroy their impetus, as the anti-Duhemian historian of science Annaliese Maier maintained the Parisian impetus dynamicists were forced to conclude because of their belief in an inherent inclinatio ad quietem or inertia in all bodies. But in fact contrary to that inertial variant of Aristotelian dynamics, according to Buridan prime matter does not resist motion. But this then raised the question within Aristotelian dynamics of why the motive force of impetus does not therefore move the spheres with infinite speed.
One impetus dynamics answer seemed to be that it was a secondary kind of motive force that produced uniform motion rather than infinite speed, just as it seemed Aristotle had supposed the spheres' moving souls do, or rather than producing uniformly accelerated motion like the primary force of gravity did by producing constantly increasing amounts of impetus. However in his Treatise on the heavens and the world in which the heavens are moved by inanimate inherent mechanical forces, Buridan's pupil Oresme offered an alternative Thomist
Thomism
Thomism is the philosophical school that arose as a legacy of the work and thought of St. Thomas Aquinas, philosopher, theologian, and Doctor of the Church. In philosophy, his commentaries on Aristotle are his most lasting contribution...
inertial response to this problem in that he did posit a resistance to motion inherent in the heavens (i.e. in the spheres), but which is only a resistance to acceleration beyond their natural speed, rather than to motion itself, and was thus a tendency to preserve their natural speed. This analysis of the dynamics of the motions of the spheres seems to have been a first anticipation of Newton's revised conception of inertia as only resisting accelerated motion but not resisting uniform motion.
Buridan's thought was followed up by his pupil Albert of Saxony
Albert of Saxony (philosopher)
Albert of Saxony was a German philosopher known for his contributions to logic and physics...
(1316–1390) and the Oxford Calculators
Oxford Calculators
The Oxford Calculators were a group of 14th-century thinkers, almost all associated with Merton College, Oxford, who took a strikingly logico-mathematical approach to philosophical problems....
. Their work in turn was elaborated by Nicole Oresme who pioneered the practice of demonstrating laws of motion in the form of graphs.
The tunnel experiment and oscillatory motion
The Buridan impetus theory developed one of the most important thought-experiments in the history of science, namely the so-called 'tunnel-experiment', so important because it brought oscillatory and pendulum motion within the pale of dynamical analysis and understanding in the science of motion for the very first time and thereby also established one of the important principles of classical mechanics. The pendulum was to play a crucially important role in the development of mechanics in the 17th century, and so more generally was the axiomatic principle of Galilean, Huygenian and Leibnizian dynamics to which the tunnel experiment also gave rise, namely that a body rises to the same height from which it has fallen, a principle of gravitational potential energy. As Galileo Galilei
Galileo Galilei
Galileo Galilei , was an Italian physicist, mathematician, astronomer, and philosopher who played a major role in the Scientific Revolution. His achievements include improvements to the telescope and consequent astronomical observations and support for Copernicanism...
expressed this fundamental principle of his dynamics in his 1632 Dialogo:
"The heavy falling body acquires sufficient impetus [in falling from a given height] to carry it back to an equal height."
This imaginary experiment predicted that a cannonball dropped down a tunnel going straight through the centre of the Earth and out the other side would go past the centre and rise on the opposite surface to the same height from which it had first fallen on the other side, driven upwards past the centre by the gravitationally created impetus it had continually accumulated in falling downwards to the centre. This impetus would require a violent motion correspondingly rising to the same height past the centre for the now opposing force of gravity to destroy it all in the same distance which it had previously required to create it, and whereupon at this turning point the ball would then descend again and oscillate back and forth between the two opposing surfaces about the centre ad infinitum in principle. Thus the tunnel experiment provided the first dynamical model of oscillatory motion, albeit a purely imaginary one in the first instance, and specifically in terms of A-B impetus dynamics.
However, this thought-experiment was then most cunningly applied to the dynamical explanation of a real world oscillatory motion, namely that of the pendulum, as follows. The oscillating motion of the cannonball was dynamically assimilated to that of a pendulum bob by imagining it to be attached to the end of an immensely cosmologically long cord suspended from the vault of the fixed stars centred on the Earth, whereby the relatively short arc of its path through the enormously distant Earth was practically a straight line along the tunnel. Real world pendula were then conceived of as just micro versions of this 'tunnel pendulum', the macro-cosmological paradigmatic dynamical model of the pendulum, but just with far shorter cords and with their bobs oscillating above the Earth's surface in arcs corresponding to the tunnel inasmuch as their oscillatory mid-point was dynamically assimilated to the centre of the tunnel as the centre of the Earth.
Hence by means of such impressive literally 'lateral thinking', rather than the dynamics of pendulum motion being conceived of as the bob inexplicably somehow falling downwards compared to the vertical to a gravitationally lowest point and then inexplicably being pulled back up again on the same upper side of that point, rather it was its lateral horizontal motion that was conceived of as a case of gravitational free-fall followed by violent motion in a recurring cycle, with the bob repeatedly travelling through and beyond the motion's vertically lowest but horizontally middle point that stood proxy for the centre of the Earth in the tunnel pendulum. So on this imaginative lateral gravitational thinking outside the box the lateral motions of the bob first towards and then away from the normal in the downswing and upswing become lateral downward and upward motions in relation to the horizontal rather than to the vertical.
Thus whereas the orthodox Aristotelians could only see pendulum motion as a dynamical anomaly, as inexplicably somehow 'falling to rest with difficulty' as historian and philosopher of science Thomas Kuhn
Thomas Kuhn
Thomas Samuel Kuhn was an American historian and philosopher of science whose controversial 1962 book The Structure of Scientific Revolutions was deeply influential in both academic and popular circles, introducing the term "paradigm shift," which has since become an English-language staple.Kuhn...
put it in his 1962 The Structure of Scientific Revolutions, on the impetus theory's novel analysis it was not falling with any dynamical difficulty at all in principle, but was rather falling in repeated and potentially endless cycles of alternating downward gravitationally natural motion and upward gravitationally violent motion. Hence, for example, Galileo was eventually to appeal to pendulum motion to demonstrate that the speed of gravitational free-fall is the same for all unequal weights precisely by virtue of dynamically modelling pendulum motion in this manner as a case of cyclically repeated gravitational free-fall along the horizontal in principle.
In fact the tunnel experiment, and hence pendulum motion, was an imaginary crucial experiment in favour of impetus dynamics against both orthodox Aristotelian dynamics without any auxiliary impetus theory, and also against Aristotelian dynamics with its H-P variant. For according to the latter two theories the bob cannot possibly pass beyond the normal. In orthodox Aristotelian dynamics there is no force to carry the bob upwards beyond the centre in violent motion against its own gravity that carries it to the centre, where it stops. And when conjoined with the Philoponus auxiliary theory, in the case where the cannonball is released from rest, again there is no such force because either all the initial upward force of impetus originally impressed within it to hold it in static dynamical equilibrium has been exhausted, or else if any remained it would be acting in the opposite direction and combine with gravity to prevent motion through and beyond the centre. Nor were the cannonball to be positively hurled downwards, and thus with a downward initial impetus, could it possibly result in an oscillatory motion. For although it could then possibly pass beyond the centre, it could never return to pass through it and rise back up again. For dynamically in this case although it would be logically possible for it to pass beyond the centre if when it reached it some of the constantly decaying downward impetus remained and still sufficiently much to be stronger than gravity to push it beyond the centre and upwards again, nevertheless when it eventually then became weaker than gravity, whereupon the ball would then be pulled back towards the centre by its gravity, it could not then pass beyond the centre to rise up again, because it would have no force directed against gravity to overcome it. For any possibly remaining impetus would be directed 'downwards' towards the centre, that is, in the same direction in which it was originally created.
Thus pendulum motion was dynamically impossible for both orthodox Aristotelian dynamics and also for H-P impetus dynamics on this 'tunnel model' analogical reasoning. But it was predicted by the impetus theory's tunnel prediction precisely because that theory posited that a continually accumulating downwards force of impetus directed towards the centre is acquired in natural motion, sufficient to then carry it upwards beyond the centre against gravity, and rather than only having an initially upwards force of impetus away from the centre as in the theory of natural motion. So the tunnel experiment constituted a crucial experiment between three alternative theories of natural motion.
On this analysis then impetus dynamics was to be preferred if the Aristotelian science of motion was to incorporate a dynamical explanation of pendulum motion. And indeed it was also to be preferred more generally if it was to explain other oscillatory motions, such as the to and fro vibrations around the normal of musical strings in tension, such as those of a zither, lute or guitar. For here the analogy made with the gravitational tunnel experiment was that the tension in the string pulling it towards the normal played the role of gravity, and thus when plucked i.e. pulled away from the normal and then released, this was the equivalent of pulling the cannonball to the Earth's surface and then releasing it. Thus the musical string vibrated in a continual cycle of the alternating creation of impetus towards the normal and its destruction after passing through the normal until this process starts again with the creation of fresh 'downward' impetus once all the 'upward' impetus has been destroyed.
This positing of a dynamical family resemblance of the motions of pendula and vibrating strings with the paradigmatic tunnel-experiment, the original mother of all oscillations in the history of dynamics, was one of the greatest imaginative developments of medieval Aristotelian dynamics in its increasing repertoire of dynamical models of different kinds of motion.
Shortly before Galileo's theory of impetus, Giambattista Benedetti
Giambattista Benedetti
Giambattista Benedetti was an Italian mathematician from Venice who was also interested in physics, mechanics, the construction of sundials, and the science of music.-Science of motion:...
modified the growing theory of impetus to involve linear motion alone:
Benedetti cites the motion of a rock in a sling as an example of the inherent linear motion of objects, forced into circular motion.
See also
- ConatusConatusConatus is a term used in early philosophies of psychology and metaphysics to refer to an innate inclination of a thing to continue to exist and enhance itself. This "thing" may be mind, matter or a combination of both...
- InertiaInertiaInertia is the resistance of any physical object to a change in its state of motion or rest, or the tendency of an object to resist any change in its motion. It is proportional to an object's mass. The principle of inertia is one of the fundamental principles of classical physics which are used to...
- MomentumMomentumIn classical mechanics, linear momentum or translational momentum is the product of the mass and velocity of an object...
- Physics in medieval Islam
- Science in the Middle AgesScience in the Middle AgesScience in the Middle Ages consisted of the study of nature, including practical disciplines, the mathematics and natural philosophy in medieval Europe. Following the fall of the Western Roman Empire and the decline in knowledge of Greek, Christian Western Europe was cut off from an important...