Residuated lattice
Encyclopedia
In abstract algebra
, a residuated lattice is an algebraic structure
that is simultaneously a lattice
x ≤ y and a monoid
x•y which admits operations x\z and z/y loosely analogous to division or implication when x•y is viewed as multiplication or conjunction respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Ward and Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebra
s, residuated Boolean algebra
s, relation algebra
s, and MV-algebra
s. Residuated semilattices omit the meet operation ∧, for example Kleene algebra
s and action algebra
s.
, a residuated lattice is an algebraic structure
L = (L, ≤, •, I) such that
In (iii), the "greatest y", being a function of z and x, is denoted x\z and called the right residual of z by x, thinking of it as what remains of z on the right after "dividing" z on the left by x. Dually the "greatest x" is denoted z/y and called the left residual of z by y. An equivalent more formal statement of (iii) that uses these operations to name these greatest values is
(iii)' for all x, y, z in L, y ≤ x\z ⇔ x•y ≤ z ⇔ x ≤ z/y.
As suggested by the notation the residuals are a form of quotient. More precisely, for a given x in L, the unary operations x• and x\ are respectively the lower and upper adjoints of a Galois connection
on L, and dually for the two functions •y and /y. By the same reasoning that applies to any Galois connection, we have yet another definition of the residuals, namely,
together with the requirement that x•y be monotone in x and y. (When axiomatized using (iii) or (iii)' monotonicity becomes a theorem and hence not required in the axiomatization.) These give a sense in which the functions x• and x\ are pseudoinverses or adjoints of each other, and likewise for •x and /x.
This last definition is purely in terms of inequalities, noting that monotonicity can be axiomatized as x•y ≤ (x∨z)•y and similarly for the other operations and their arguments. Moreover any inequality x ≤ y can be expressed equivalently as an equation, either x∧y = x or x∨y = y. This along with the equations axiomatizing lattices and monoids then yields a purely equational definition of residuated lattices, provided the requisite operations are adjoined to the signature (L, ≤, •, I) thereby expanding it to (L, ∧, ∨, •, I, /, \). When thus organized, residuated lattices form an equational class or variety
, whose homomorphisms respect the residuals as well as the lattice and monoid operations. Note that distributivity x•(y∨z) = (x•y) ∨ (x•z) and x•0 = 0 are consequences of these axioms and so do not need to be made part of the definition. This necessary distributivity of • over ∨ does not in general entail distributivity of ∧ over ∨, that is, a residuated lattice need not be a distributive lattice. However it does do so when • and ∧ are the same operation, a special case of residuated lattices called a Heyting algebra
.
Alternative notations for x•y include x◦y, x;y (relation algebra
), and x⊗y (linear logic
). Alternatives for I include e and 1'. Alternative notations for the residuals are x → y for x\y and y ← x for y/x, suggested by the similarity between residuation and implication in logic, with the multiplication of the monoid understood as a form of conjunction that need not be commutative. When the monoid is commutative the two residuals coincide. When not commutative, the intuitive meaning of the monoid as conjunction and the residuals as implications can be understood as having a temporal quality: x•y means x and then y, x → y means had x (in the past) then y (now), and y ← x means if-ever x (in the future) then y (at that time), as illustrated by the natural language example at the end of the examples.
s, as well as all chains or total order
s forming a complete lattice
, for example the unit interval [0,1] in the real line, or the integers and ±.
The structure (Z, min, max, +, 0, −, −) (the integers with subtraction for both residuals) is a commutative residuated lattice such that the unit of the monoid is not the greatest element (indeed there is no least or greatest integer), and the multiplication of the monoid is not the meet operation of the lattice. In this example the inequalities are equalities because − (subtraction) is not merely the adjoint or pseudoinverse of + but the true inverse. Any totally ordered group under addition such as the rationals or the reals can be substituted for the integers in this example. The nonnegative portion of any of these examples is an example provided min and max are interchanged and − is replaced by monus
, defined (in this case) so that x-y = 0 when x ≤ y and otherwise is ordinary subtraction.
A more general class of examples is given by the Boolean algebra of all binary relations on a set X, namely the power set of X2, made a residuated lattice by taking the monoid multiplication • to be composition of relations and the monoid unit to be the identity relation I on X consisting of all pairs (x,x) for x in X. Given two relations R and S on X, the right residual R\S of S by R is the binary relation such that x(R\S)y holds just when for all z in X, zRx implies zSy (notice the connection with implication). The left residual is the mirror image of this: y(S/R)x holds just when for all z in X, xRz implies ySz.
This can be illustrated with the binary relations < and > on {0,1} in which 0 < 1 and 1 > 0 are the only relationships that hold. Then x(>\<)y holds just when x = 1, while x(</>)y holds just when y = 0, showing that residuation of < by > is different depending on whether we residuate on the right or the left. This difference is a consequence of the difference between <•> and >•<, where the only relationships that hold are 0(<•>)0 (since 0<1>0) and 1(>•<)1 (since 1>0<1). Had we chosen ≤ and ≥ instead of < and >, ≥\≤ and ≤/≥ would have been the same because ≤•≥ = ≥•≤, both of which always hold between all x and y (since x≤1≥y and x≥0≤y).
The Boolean algebra 2Σ* of all formal language
s over an alphabet (set) Σ forms a residuated lattice whose monoid multiplication is language concatenation LM and whose monoid unit I is the language {ε} consisting of just the empty string ε. The right residual M\L consists of all words w over Σ such that Mw ⊆ L. The left residual L/M is the same with wM in place of Mw.
The residuated lattice of all binary relations on X is finite just when X is finite, and commutative just when X has at most one element. When X is empty the algebra is the degenerate Boolean algebra in which 0 = 1 = I. The residuated lattice of all languages on Σ is commutative just when Σ has at most one letter. It is finite just when Σ is empty, consisting of the two languages 0 (the empty language {}) and the monoid unit I = {ε} = 1.
The examples forming a Boolean algebra have special properties treated in the article on residuated Boolean algebra
s.
In natural language
residuated lattices formalize the logic of "and" when used with its noncommutative meaning of "and then." Setting x = bet, y = win, z = rich, we can read x•y ≤ z as "bet and then win entails rich." By the axioms this is equivalent to y ≤ x→z meaning "win entails had bet then rich", and also to x ≤ z←y meaning "bet entails if-ever win then rich." Humans readily detect such non-sequiturs as "bet entails had win then rich" and "win entails if-ever bet then rich" as both being equivalent to the wishful thinking "win and then bet entails rich." Humans do not so readily detect that Peirce's law
((P→Q)→P)→P is a tautology
, giving an interesting situation where humans exhibit more proficiency with nonclassical reasoning than classical.
L = (L, ∨, •, 1, /, \) satisfying all the residuated lattice equations as specified above except those containing an occurrence of the symbol ∧. The option of defining x ≤ y as x∧y = x is then not available, leaving only the other option x∨y = y (or any equivalent thereof).
Any residuated lattice can be made a residuated semilattice simply by omitting ∧. Residuated semilattices arise in connection with action algebra
s, which are residuated semilattices that are also Kleene algebra
s, for which ∧ is ordinarily not required.
Abstract algebra
Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras...
, a residuated lattice is an algebraic structure
Algebraic structure
In abstract algebra, an algebraic structure consists of one or more sets, called underlying sets or carriers or sorts, closed under one or more operations, satisfying some axioms. Abstract algebra is primarily the study of algebraic structures and their properties...
that is simultaneously a lattice
Lattice (order)
In mathematics, a lattice is a partially ordered set in which any two elements have a unique supremum and an infimum . Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities...
x ≤ y and a monoid
Monoid
In abstract algebra, a branch of mathematics, a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are studied in semigroup theory as they are naturally semigroups with identity. Monoids occur in several branches of mathematics; for...
x•y which admits operations x\z and z/y loosely analogous to division or implication when x•y is viewed as multiplication or conjunction respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Ward and Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebra
Heyting algebra
In mathematics, a Heyting algebra, named after Arend Heyting, is a bounded lattice equipped with a binary operation a→b of implication such that ∧a ≤ b, and moreover a→b is the greatest such in the sense that if c∧a ≤ b then c ≤ a→b...
s, residuated Boolean algebra
Residuated Boolean algebra
In mathematics, a residuated Boolean algebra is a residuated lattice whose lattice structure is that of a Boolean algebra. Examples include Boolean algebras with the monoid taken to be conjunction, the set of all formal languages over a given alphabet Σ under concatenation, the set of all binary...
s, relation algebra
Relation algebra
In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation...
s, and MV-algebra
MV-algebra
In abstract algebra, a branch of pure mathematics, an MV-algebra is an algebraic structure with a binary operation \oplus, a unary operation \neg, and the constant 0, satisfying certain axioms...
s. Residuated semilattices omit the meet operation ∧, for example Kleene algebra
Kleene algebra
In mathematics, a Kleene algebra is either of two different things:* A bounded distributive lattice with an involution satisfying De Morgan's laws , additionally satisfying the inequality x∧−x ≤ y∨−y. Kleene algebras are subclasses of Ockham algebras...
s and action algebra
Action algebra
In algebraic logic, an action algebra is an algebraic structure which is both a residuated semilattice and a Kleene algebra. It adds the star or reflexive transitive closure operation of the latter to the former, while adding the left and right residuation or implication operations of the former...
s.
Definition
In mathematicsMathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...
, a residuated lattice is an algebraic structure
Algebraic structure
In abstract algebra, an algebraic structure consists of one or more sets, called underlying sets or carriers or sorts, closed under one or more operations, satisfying some axioms. Abstract algebra is primarily the study of algebraic structures and their properties...
L = (L, ≤, •, I) such that
- (i) (L, ≤) is a latticeLattice (order)In mathematics, a lattice is a partially ordered set in which any two elements have a unique supremum and an infimum . Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities...
. - (ii) (L, •, I) is a monoidMonoidIn abstract algebra, a branch of mathematics, a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are studied in semigroup theory as they are naturally semigroups with identity. Monoids occur in several branches of mathematics; for...
. For all z there exists for every x a greatest y, and for every y a greatest x, such that x•y ≤ z (the residuation properties).
In (iii), the "greatest y", being a function of z and x, is denoted x\z and called the right residual of z by x, thinking of it as what remains of z on the right after "dividing" z on the left by x. Dually the "greatest x" is denoted z/y and called the left residual of z by y. An equivalent more formal statement of (iii) that uses these operations to name these greatest values is
(iii)' for all x, y, z in L, y ≤ x\z ⇔ x•y ≤ z ⇔ x ≤ z/y.
As suggested by the notation the residuals are a form of quotient. More precisely, for a given x in L, the unary operations x• and x\ are respectively the lower and upper adjoints of a Galois connection
Galois connection
In mathematics, especially in order theory, a Galois connection is a particular correspondence between two partially ordered sets . The same notion can also be defined on preordered sets or classes; this article presents the common case of posets. Galois connections generalize the correspondence...
on L, and dually for the two functions •y and /y. By the same reasoning that applies to any Galois connection, we have yet another definition of the residuals, namely,
- x•(x\y) ≤ y ≤ x\(x•y), and•x ≤ y ≤ (y•x)/x,
together with the requirement that x•y be monotone in x and y. (When axiomatized using (iii) or (iii)' monotonicity becomes a theorem and hence not required in the axiomatization.) These give a sense in which the functions x• and x\ are pseudoinverses or adjoints of each other, and likewise for •x and /x.
This last definition is purely in terms of inequalities, noting that monotonicity can be axiomatized as x•y ≤ (x∨z)•y and similarly for the other operations and their arguments. Moreover any inequality x ≤ y can be expressed equivalently as an equation, either x∧y = x or x∨y = y. This along with the equations axiomatizing lattices and monoids then yields a purely equational definition of residuated lattices, provided the requisite operations are adjoined to the signature (L, ≤, •, I) thereby expanding it to (L, ∧, ∨, •, I, /, \). When thus organized, residuated lattices form an equational class or variety
Variety (universal algebra)
In mathematics, specifically universal algebra, a variety of algebras is the class of all algebraic structures of a given signature satisfying a given set of identities. Equivalently, a variety is a class of algebraic structures of the same signature which is closed under the taking of homomorphic...
, whose homomorphisms respect the residuals as well as the lattice and monoid operations. Note that distributivity x•(y∨z) = (x•y) ∨ (x•z) and x•0 = 0 are consequences of these axioms and so do not need to be made part of the definition. This necessary distributivity of • over ∨ does not in general entail distributivity of ∧ over ∨, that is, a residuated lattice need not be a distributive lattice. However it does do so when • and ∧ are the same operation, a special case of residuated lattices called a Heyting algebra
Heyting algebra
In mathematics, a Heyting algebra, named after Arend Heyting, is a bounded lattice equipped with a binary operation a→b of implication such that ∧a ≤ b, and moreover a→b is the greatest such in the sense that if c∧a ≤ b then c ≤ a→b...
.
Alternative notations for x•y include x◦y, x;y (relation algebra
Relation algebra
In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation...
), and x⊗y (linear logic
Linear logic
Linear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter...
). Alternatives for I include e and 1'. Alternative notations for the residuals are x → y for x\y and y ← x for y/x, suggested by the similarity between residuation and implication in logic, with the multiplication of the monoid understood as a form of conjunction that need not be commutative. When the monoid is commutative the two residuals coincide. When not commutative, the intuitive meaning of the monoid as conjunction and the residuals as implications can be understood as having a temporal quality: x•y means x and then y, x → y means had x (in the past) then y (now), and y ← x means if-ever x (in the future) then y (at that time), as illustrated by the natural language example at the end of the examples.
Examples
Boolean algebras and Heyting algebras are commutative residuated lattices in which x•y = x∧y (whence the unit I is the top element 1 of the algebra) and both residuals x\y and y/x are the same operation, namely implication x → y. The second example is quite general since Heyting algebras include all finite distributive latticeDistributive lattice
In mathematics, distributive lattices are lattices for which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection...
s, as well as all chains or total order
Total order
In set theory, a total order, linear order, simple order, or ordering is a binary relation on some set X. The relation is transitive, antisymmetric, and total...
s forming a complete lattice
Complete lattice
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum . Complete lattices appear in many applications in mathematics and computer science...
, for example the unit interval [0,1] in the real line, or the integers and ±.
The structure (Z, min, max, +, 0, −, −) (the integers with subtraction for both residuals) is a commutative residuated lattice such that the unit of the monoid is not the greatest element (indeed there is no least or greatest integer), and the multiplication of the monoid is not the meet operation of the lattice. In this example the inequalities are equalities because − (subtraction) is not merely the adjoint or pseudoinverse of + but the true inverse. Any totally ordered group under addition such as the rationals or the reals can be substituted for the integers in this example. The nonnegative portion of any of these examples is an example provided min and max are interchanged and − is replaced by monus
Monus
In mathematics, monus is a variant of subtraction that can be defined for certain commutative monoids that are not groups.The monus a − b of two elements a and b is defined in certain commutative monoids M such that the relation defined by b ≤ a if and only if there is...
, defined (in this case) so that x-y = 0 when x ≤ y and otherwise is ordinary subtraction.
A more general class of examples is given by the Boolean algebra of all binary relations on a set X, namely the power set of X2, made a residuated lattice by taking the monoid multiplication • to be composition of relations and the monoid unit to be the identity relation I on X consisting of all pairs (x,x) for x in X. Given two relations R and S on X, the right residual R\S of S by R is the binary relation such that x(R\S)y holds just when for all z in X, zRx implies zSy (notice the connection with implication). The left residual is the mirror image of this: y(S/R)x holds just when for all z in X, xRz implies ySz.
This can be illustrated with the binary relations < and > on {0,1} in which 0 < 1 and 1 > 0 are the only relationships that hold. Then x(>\<)y holds just when x = 1, while x(</>)y holds just when y = 0, showing that residuation of < by > is different depending on whether we residuate on the right or the left. This difference is a consequence of the difference between <•> and >•<, where the only relationships that hold are 0(<•>)0 (since 0<1>0) and 1(>•<)1 (since 1>0<1). Had we chosen ≤ and ≥ instead of < and >, ≥\≤ and ≤/≥ would have been the same because ≤•≥ = ≥•≤, both of which always hold between all x and y (since x≤1≥y and x≥0≤y).
The Boolean algebra 2Σ* of all formal language
Formal language
A formal language is a set of words—that is, finite strings of letters, symbols, or tokens that are defined in the language. The set from which these letters are taken is the alphabet over which the language is defined. A formal language is often defined by means of a formal grammar...
s over an alphabet (set) Σ forms a residuated lattice whose monoid multiplication is language concatenation LM and whose monoid unit I is the language {ε} consisting of just the empty string ε. The right residual M\L consists of all words w over Σ such that Mw ⊆ L. The left residual L/M is the same with wM in place of Mw.
The residuated lattice of all binary relations on X is finite just when X is finite, and commutative just when X has at most one element. When X is empty the algebra is the degenerate Boolean algebra in which 0 = 1 = I. The residuated lattice of all languages on Σ is commutative just when Σ has at most one letter. It is finite just when Σ is empty, consisting of the two languages 0 (the empty language {}) and the monoid unit I = {ε} = 1.
The examples forming a Boolean algebra have special properties treated in the article on residuated Boolean algebra
Residuated Boolean algebra
In mathematics, a residuated Boolean algebra is a residuated lattice whose lattice structure is that of a Boolean algebra. Examples include Boolean algebras with the monoid taken to be conjunction, the set of all formal languages over a given alphabet Σ under concatenation, the set of all binary...
s.
In natural language
Natural language
In the philosophy of language, a natural language is any language which arises in an unpremeditated fashion as the result of the innate facility for language possessed by the human intellect. A natural language is typically used for communication, and may be spoken, signed, or written...
residuated lattices formalize the logic of "and" when used with its noncommutative meaning of "and then." Setting x = bet, y = win, z = rich, we can read x•y ≤ z as "bet and then win entails rich." By the axioms this is equivalent to y ≤ x→z meaning "win entails had bet then rich", and also to x ≤ z←y meaning "bet entails if-ever win then rich." Humans readily detect such non-sequiturs as "bet entails had win then rich" and "win entails if-ever bet then rich" as both being equivalent to the wishful thinking "win and then bet entails rich." Humans do not so readily detect that Peirce's law
Peirce's law
In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form that involves only one sort of connective, namely...
((P→Q)→P)→P is a tautology
Tautology (logic)
In logic, a tautology is a formula which is true in every possible interpretation. Philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921; it had been used earlier to refer to rhetorical tautologies, and continues to be used in that alternate sense...
, giving an interesting situation where humans exhibit more proficiency with nonclassical reasoning than classical.
Residuated semilattice
A residuated semilattice is defined almost identically for residuated lattices, omitting just the meet operation ∧. Thus it is an algebraic structureAlgebraic structure
In abstract algebra, an algebraic structure consists of one or more sets, called underlying sets or carriers or sorts, closed under one or more operations, satisfying some axioms. Abstract algebra is primarily the study of algebraic structures and their properties...
L = (L, ∨, •, 1, /, \) satisfying all the residuated lattice equations as specified above except those containing an occurrence of the symbol ∧. The option of defining x ≤ y as x∧y = x is then not available, leaving only the other option x∨y = y (or any equivalent thereof).
Any residuated lattice can be made a residuated semilattice simply by omitting ∧. Residuated semilattices arise in connection with action algebra
Action algebra
In algebraic logic, an action algebra is an algebraic structure which is both a residuated semilattice and a Kleene algebra. It adds the star or reflexive transitive closure operation of the latter to the former, while adding the left and right residuation or implication operations of the former...
s, which are residuated semilattices that are also Kleene algebra
Kleene algebra
In mathematics, a Kleene algebra is either of two different things:* A bounded distributive lattice with an involution satisfying De Morgan's laws , additionally satisfying the inequality x∧−x ≤ y∨−y. Kleene algebras are subclasses of Ockham algebras...
s, for which ∧ is ordinarily not required.