Pharmaceuticals and personal care products in the environment
Encyclopedia
The environmental impact of pharmaceuticals and personal care products (PPCPs) is largely speculative. PPCPs are substances used by individuals for personal health or cosmetic
Cosmetics
Cosmetics are substances used to enhance the appearance or odor of the human body. Cosmetics include skin-care creams, lotions, powders, perfumes, lipsticks, fingernail and toe nail polish, eye and facial makeup, towelettes, permanent waves, colored contact lenses, hair colors, hair sprays and...

 reasons and the products used by agribusiness
Agribusiness
In agriculture, agribusiness is a generic term for the various businesses involved in food production, including farming and contract farming, seed supply, agrichemicals, farm machinery, wholesale and distribution, processing, marketing, and retail sales....

 to boost growth or health of livestock. PPCPs have been detected in water bodies throughout the world. The effects of these chemicals on humans and the environment are not yet known, but to date there is no scientific evidence that they have an impact on human health.

Types

"Pharmaceuticals", or prescription and over-the-counter medications made for human use or veterinary or agribusiness purposes, are common PPCPs found in the environment. Antibiotics, nutraceuticals (e.g., vitamins), supplements
Dietary supplement
A dietary supplement, also known as food supplement or nutritional supplement, is a preparation intended to supplement the diet and provide nutrients, such as vitamins, minerals, fiber, fatty acids, or amino acids, that may be missing or may not be consumed in sufficient quantities in a person's diet...

, and sexual enhancement drugs
Sex and drugs
Many drugs, both legal and illegal, have side effects which impact on the user's sexual functions. For example, the side effect of many legal antidepressants and antipsychotic drugs is the reduction of sexual desire....

 are contained in this group. "Personal care products
Personal care
Personal care or toiletries is the industry which manufactures consumer products used for beautification and in personal hygiene.-Subsectors:Subsectors of personal care include cosmetics and feminine hygiene....

" may include cosmetics
Cosmetics
Cosmetics are substances used to enhance the appearance or odor of the human body. Cosmetics include skin-care creams, lotions, powders, perfumes, lipsticks, fingernail and toe nail polish, eye and facial makeup, towelettes, permanent waves, colored contact lenses, hair colors, hair sprays and...

, fragrances, menstrual care products
Feminine hygiene
Feminine hygiene is a general euphemism used to describe personal care products used by women during menstruation, vaginal discharge, and other bodily functions related to the vulva...

, lotions, shampoos, soaps, toothpastes, and sunscreen. These products typically enter the environment when passed through or washed off the body and into the ground or sewer lines, or when disposed of in the trash, septic tank, or sewage system.

Illicit drugs such as methamphetamine
Methamphetamine
Methamphetamine is a psychostimulant of the phenethylamine and amphetamine class of psychoactive drugs...

 and cocaine
Cocaine
Cocaine is a crystalline tropane alkaloid that is obtained from the leaves of the coca plant. The name comes from "coca" in addition to the alkaloid suffix -ine, forming cocaine. It is a stimulant of the central nervous system, an appetite suppressant, and a topical anesthetic...

 are another type of PPCP. The manufacturers of these products may accidentally spill or purposefully dump harmful byproducts directly into the environment. Drug users also introduce these substances into the environment when handling drugs and when the substances pass through their bodies and into a septic tank or sewage system. Traces of illicit drugs can be found in waterways and may even be carried by money.

Entry and presence in the environment


The use of pharmaceuticals and personal care products (PPCPs) is on the rise with an estimated increase from 2 billion to 3.9 billion annual prescriptions between 1999 and 2009 in the United States alone. PPCPs enter into the environment through individual human activity and as residues from manufacturing, agribusiness, veterinary use, and hospital
Hospital
A hospital is a health care institution providing patient treatment by specialized staff and equipment. Hospitals often, but not always, provide for inpatient care or longer-term patient stays....

 and community use. Individuals may add PPCPs to the environment through waste excretion and bathing as well as by directly disposing of unused medications to septic tanks, sewers
Sewerage
Sewerage refers to the infrastructure that conveys sewage. It encompasses receiving drains, manholes, pumping stations, storm overflows, screening chambers, etc. of the sanitary sewer...

, or trash. Because PPCPs tend to dissolve relatively easily and do not evaporate at normal temperatures, they often end up in soil and water bodies.

Some PPCPs are broken down or processed easily by a human or animal body and/or degrade quickly in the environment . However, others do not break down or degrade easily. The likelihood or ease with which an individual substance will break down depends on its chemical makeup and the metabolic pathway of the compound.

A study by the U.S. Geological Survey report published in 2002 found detectable quantities of PPCPs in 80 percent of a sampling of 139 susceptible streams in 30 states. The most common pharmaceuticals detected were steroids and nonprescription drugs; detergents, fire retardant
Fire retardant
A fire retardant is a substance other than water that reduces flammability of fuels or delays their combustion. This typically refers to chemical retardants but may also include substances that work by physical action, such as cooling the fuels; examples of these include fire-fighting foams and...

s, pesticides, natural and synthetic hormones, and an assortment of antibiotics and prescription medications were also found. A 2006 study found detectable concentrations of 28 pharmaceutical compounds in sewage treatment plant effluents, surface water, and sediment. The therapeutic classes included antibiotics, analgesics and anti-inflammatories, lipid regulators, beta-blockers, anti-epileptics, and steroid hormones. Although most chemical concentrations were detected at low levels (nano-grams/Liter (ng/L)), there are uncertainties that remain regarding the levels at which toxicity occurs and the risks of bioaccumulation of these pharmaceutical compounds.

Manufacturing of these products contributes to environmental pollution
Pollution
Pollution is the introduction of contaminants into a natural environment that causes instability, disorder, harm or discomfort to the ecosystem i.e. physical systems or living organisms. Pollution can take the form of chemical substances or energy, such as noise, heat or light...

 and the packaging of PPCPs often becomes waste
Waste
Waste is unwanted or useless materials. In biology, waste is any of the many unwanted substances or toxins that are expelled from living organisms, metabolic waste; such as urea, sweat or feces. Litter is waste which has been disposed of improperly...

.

Human

The scope of human exposure to pharmaceuticals and personal care products from the environment is a complex function of many factors. These factors include the concentrations, types, and distribution of pharmaceuticals in the environment; the pharmacokinetics of each drug; the structural transformation of the chemical compounds either through metabolism or natural degradation processes; and the potential bioaccumulation of the drugs. More research is needed to determine the effects on humans of long-term exposure to low levels of PPCPs. The full effects of mixtures of low concentrations of different PPCPs is also unknown.

Although research has shown that PPCPs are present in water bodies throughout the world, no studies have shown a direct impact on human health. However, the absence of empirical data cannot rule out the possibility of adverse outcomes due to interactions or long-term exposures to these substances. Because the amounts of these chemicals in the water supply may be in the parts per trillion or parts per billion, it is difficult to chemically determine the exact amounts present. Many studies have therefore been focused to determining if the concentrations of these pharmaceuticals exist at or above the accepted daily intake (ADI) at which the designed biological outcomes can occur. Most PPCPs studied have been found at levels much lower than their ADI, but some exist in the environment at some orders of magnitude greater than levels that could impart more subtle outcomes, such as behavioral or intellectual changes that are not evaluated as part of their ADI.

In addition to the growing concerns about human health risks from pharmaceutical drugs via environmental exposures, many researchers have speculated about the potential for inducing an antibiotic resistance. One study found 10 different antibiotics in sewage treatment effluents, surface water, and sediments. Some microbiologists believe that if antibiotic concentrations are higher than the minimum inhibitory concentrations (MICs) of a species of pathogenic bacteria, a selective pressure would be exerted and, as a result, antibiotic resistance would be selectively promoted. It has also been proven that at even sub-inhibitory concentrations (e.g., one-fourth of the MIC), several antibiotics are able to have an effect on gene expression (e.g., as shown for the modulation of expression of toxin-encoding genes in Staphylococcus aureus). For reference the MIC of erythromycin that is effective against 90% of lab grown Campylobacter bacteria, the most common food-borne pathogen in the United States, is 0.06 ng/mL. One study found that the average concentration of erythromycin, a commonly prescribed antibiotic, was 0.09 ng/mL in water treatment plant effluents, just above the MIC for Campylobacter. Additionally, transfer of genetic elements among bacteria has been observed under natural conditions in wastewater treatment plants, and selection of resistant bacteria has been documented in sewers receiving wastewaters from pharmaceutical plants.

Environmental

While the full effects of most PPCPs on the environment are not understood, there is concern about the potential they have for harm because they may act unpredictably when mixed with other chemicals from the environment or concentrate in the food chain. Additionally, some PPCPS are active at very low concentrations, and are often released continuously in large or widespread quantities.

Because of the high solubility of most PPCPs, aquatic organisms are especially vulnerable to their effects. Researchers have found that a class of antidepressants may be found in frogs and can significantly slow their development. The increased presence of estrogen and other synthetic hormones in waste water due to birth control and hormonal therapies has been linked to increased feminization of exposed fish and other aquatic organisms. The chemicals within these PPCP products could either affect the feminization or masculinization of different fishes, therefore impacting their reproductive rates. In addition to being found only in waterways, the ingredients of some PPCPs can also be found in the soil. Since some of these substances take a long time or cannot be degraded biologically, they make their way up the food chain. Information pertaining to the transport and fate of these hormones and their metabolites in dairy waste disposal is still being investigated, yet research suggest that the land application of solid wastes is likely linked with more hormone contamination problems. Not only does the pollution from PPCPs affect marine ecosystems, but also those habitats that depend on this polluted water.

Proper disposal

Depending on the source and ingredients, there are various ways in which the public can dispose of pharmaceutical and personal care products. In the case of pharmaceutical products, the most environmentally safe one is to take advantage of a community drug take-back programs that collect drugs at a central location for proper disposal. Several local public health departments in the United States have initiated pharmaceutical take-back programs. In addition, the United States Drug Enforcement Agency (DEA) periodically promotes local take-back programs as well as a program called the National Take Back Initiative. Currently, take back programs are funded by state or local health departments or are volunteer programs through pharmacies or health care providers. In recent years, the proposition that pharmaceutical companies should be responsible for their products “from the cradle to the grave,” has been gaining traction. This philosophy suggests that the manufacturers should fund the proper disposal of pharmaceutical products. Take back programs should exist in every community, and if further information is required on the matter the city officials should be contacted. The Environmental Protection Agency and the Office of National Drug Policy further emphasize that if no program is available to follow the subsequent measurements:
  1. take the prescription drugs out of their original containers
  2. mix drugs with cat litter or used coffee grounds
  3. place the mixture into a disposable container with a lid, such as a sealable bag
  4. cover up any personal identification with a black marker that is on the original pill containers
  5. place these containers in the bag with the mixture, seal them, and place them in the trash.


After these products are properly disposed, the process of treating them for minimizing environmental impact begins. Water treatment facilities use different processes in order to minimize or fully eliminate the amount of these pollutants. This is done by using sorption
Sorption
Sorption refers to the action of absorption* Absorption is the incorporation of a substance in one state into another of a different state ....

 where suspended solids are removed by sedimentation
Sedimentation
Sedimentation is the tendency for particles in suspension to settle out of the fluid in which they are entrained, and come to rest against a barrier. This is due to their motion through the fluid in response to the forces acting on them: these forces can be due to gravity, centrifugal acceleration...

.
Another method used is biodegradation
Biodegradation
Biodegradation or biotic degradation or biotic decomposition is the chemical dissolution of materials by bacteria or other biological means...

, and through this method microorganisms, such as bacteria, feed or break down these pollutants thus eliminating them from the contaminated media.

Current research

Starting in the mid 1960s, ecologists and toxicologists began to express concern about the potential adverse effects of pharmaceuticals in the water supply, but it wasn’t until a decade later that the presence of pharmaceuticals in water was well documented. Studies in 1975 and 1977 found clofibric and salicylic acids at trace concentrations in treated water. Widespread concern about and research into the effect of PPCPs largely started in the early 1990s. Until this time, PPCPs were largely ignored because of their relative solubility and containment in waterways compared to conventional pollutant
Conventional pollutant
A conventional pollutant is a term used in the USA to describe a water pollutant that is amenable to treatment by a municipal sewage treatment plant. A basic list of conventional pollutants is defined in the U.S. Clean Water Act...

s like agrochemicals, industrial chemicals, and industrial waste and byproducts. Since then, a great deal of attention has been directed to the ecological and physiological risk associated with pharmaceutical compounds and their metabolites in water and the environment. In the last decade, most research in this area has focused on steroid hormones and antibiotics. There is concern that steroid hormones may act as endocrine disruptors. Some research suggests that concentrations of ethinylestradiol, an estrogen used in oral contraceptive medications and one of the most commonly prescribed pharmaceuticals, can cause endocrine disruption in aquatic and amphibian wildlife in concentrations as low as 1 ng/L.

Current research on PPCPs aims to answer these questions:
  • What is the impact of exposure to low levels of PPCPs over time?
  • What is the impact of exposure to mixtures of chemicals?
  • Are the impacts acute (short-term) or chronic (long-term)?
  • Are certain populations, such as the elderly, very young, or immuno-compromised, more vulnerable to the impacts of these compounds?
  • What is the impact of PPCPs on bacterial, fungal, and aquatic life?
  • Are the levels of antibiotics in the aquatic environment sufficient to promote antibiotic resistance?
  • What is the impact of exposure to steroid hormones on animal and human populations?

Pharmacoenvironmentology

Despite receiving attention and necessary action by regulatory agencies like FDA and the European Union, there is a lack of substantial procedures regarding impending monitoring of drug concentrations in the environment and the palpable adverse effects. In 2006 a new concept of pharmacovigilance in relation to monitoring of drugs and its impact on environmental was suggested. Pharmacoenvironmentology or ecopharmacovigilance is a branch of pharmacology
Pharmacology
Pharmacology is the branch of medicine and biology concerned with the study of drug action. More specifically, it is the study of the interactions that occur between a living organism and chemicals that affect normal or abnormal biochemical function...

 and a form of pharmacovigilance
Pharmacovigilance
Pharmacovigilance is the pharmacological science relating to the detection, assessment, understanding and prevention of adverse effects, particularly long term and short term side effects of medicines...

 (pharmecovigilance) concerning entry of chemicals or drugs into the environment after elimination from humans and animals post-therapy. It deals specifically with those pharmacological agents that have impact on the environment via elimination through living organisms subsequent to pharmacotherapy.

Ecopharmacology

Ecopharmacology concerns the entry of chemicals or drugs into the environment through any route and at any concentration disturbing the balance of ecology (ecosystem), as a consequence. Ecopharmacology is a broad term that includes studies of “PPCPs” irrespective of doses and route of entry into environment.

Routes into the environment
Pharmacceutical residues may reach the environment by a number of different routes. It is generally assumed (albeit hardly verified) that the production of pharmaceuticals in industrialised countries is well controlled and unharmful to the environment, due to the local legal restrictions usually required to permit production. However, a substantial fraction of the global production of pharmaceuticals takes place in low-cost production countries like India and China. Recent reports from India demonstrate that such production sites may emit very large quantities of e.g. antibiotics, yielding levels of the drugs in local surface waters higher than those found in the blood of patients under treatment.
The major route for pharmaceutical residues to reach the aquatic environment is most probably by excretion from patients undergoing pharma treatment. Since many pharmaceutical substances are not metabolized in the body they may be excreted in biologically active form, usually via the urine. Furthermore, many pharmaceutical substances are not fully taken up from the intestine (following oral administration in patients) into their blood stream. The fraction not taken up into the blood stream will remain in the gut and eventually be excreted via the faeces. Hence, both urine and faeces from treated patients contain pharmaceutical residues.
An additional source to environmental pollution with pharmaceuticals is improper disposal of unused or expired drug residues. In European countries take-back systems for such residues are usually in place (although not always utilized to full extent) while in e.g. the US only voluntary initiatives on a local basis exist. Proper destruction of pharma residues should yield rest products without any pharmaceutical or ecotoxic activity. Furthermore, the residues should not act as components in the environmental formation of new such products. Incineration at a high temperature (>1000 degrees centrigrade) is considered to fulfil the requirements, but even following such incineration residual ashes from the incineration should be properly taken care of.
Pharmaceuticals used in veterinary medicine, or as additives to animal food, pose a different problem, since they are excreted into soil or possibly open surface waters. It is wellknown that such excretions may affect terrestrial organisms directly, leading to extinction of exposed species (e.g. dung-beetles). Lipid-soluble pharma residues from veterinary use may bind strongly to soil particles, with little tendency to leak out to ground water or to local surface waters. More water-soluble residues may be washed out with rain or melting snow and reach both ground water and surface water streams.

Fate of pharmaceuticals in the sewage treatment plant
Sewage treatment plants may offer a variety of techniques for diminishing the amount and harmful activity of its biological contents. Usually the sewage treatment plant (STP) is equipped with an initial mechanical separation of solid particles (socks, underwear, hygien articles etc.) appearing in the incoming water. Following this there may be filters separating finer particles either occurring in the incoming water or developing as a consequence of chemical treatment of the water with flocculating agents. Many STPs also include one or several steps of biological treatment. By stimulating the activity of various strains of microorganisms physically their activity may be promoted to degrade the organic content of the sewage by up to 90 % or more. In certain cases more advanced techniques are used as well. Such techniques may comprise UV-treatment of the water, or addition of ozon. In either case, these methods will degrade organic material not taken care of by the microorganisms. Optimal treatment with such methods may destroy up to 80 % or more of pharma residues in the water. A final step with acivated carbon may eliminate possible reactive degradation products from the UV or ozon treatment. Several research projects are running to optimize the use of advanced sewage treatment techniques under different conditions. The advanced techniques will increase the costs for the sewage treatment substantially. It is therefore important to define best available technique before extensive infrastructure investments are introduced on a wide basis.
The fate of incoming pharmaceutical residues in the STP is unpredictable. Some substances seem to be more or less completely eliminated, while others pass the diffent steps in the STP unaffected. There is no systematic knowledge at hand to predict how and why this happens. Pharmaceutical residues that have been conjugated (bound to a bile acid) before being excreted from the patients may undergo de-conjugation in the STP, yielding higher levels of free pharmaceutical substance in the outlet from the STP than in its incoming water. Some pharmaceuticals with large sales volumes have not been detected in the incoming water to the STP, indicating that complete metabolism and degradation must have occurred already in the patient or during the transport of sewage from the household to the STP.

See also

  • Environmental Persistent Pharmaceutical Pollutant
    Environmental persistent pharmaceutical pollutant
    The term Environmental Pharmaceutical Persistent Pollutant , was suggested in the nomination 2010 of pharmaceuticals and environment as an emerging issue to Strategic Approach to International Chemicals Management by the International Society of Doctors for the Environment .Pharmaceuticals are...

     EPPP
  • Plastic particle water pollution
  • Environmental issue
    Environmental issue
    Environmental issues are negative aspects of human activity on the biophysical environment. Environmentalism, a social and environmental movement that started in the 1960s, addresses environmental issues through advocacy, education and activism.-Types:...

  • Personal care
    Personal care
    Personal care or toiletries is the industry which manufactures consumer products used for beautification and in personal hygiene.-Subsectors:Subsectors of personal care include cosmetics and feminine hygiene....

  • Water pollution
    Water pollution
    Water pollution is the contamination of water bodies . Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove harmful compounds....


External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK