Ion acoustic wave
Encyclopedia
An ion acoustic wave is one type of longitudinal
Longitudinal wave
Longitudinal waves, as known as "l-waves", are waves that have the same direction of vibration as their direction of travel, which means that the movement of the medium is in the same direction as or the opposite direction to the motion of the wave. Mechanical longitudinal waves have been also...

 oscillation of the ions and electrons in a plasma, much like acoustic waves traveling in neutral gas. However, because the waves propagate through positively charged ions, ion acoustic waves can interact with their electromagnetic fields, as well as simple collisions. In plasmas, ion acoustic waves are frequently referred to as acoustic waves or even just sound waves. They commonly govern the evolution of mass density, for instance due to pressure gradients, on times scales longer than the frequency corresponding to the relevant length scale. Ion acoustic waves can occur in an unmagnetized plasma
Plasma (physics)
In physics and chemistry, plasma is a state of matter similar to gas in which a certain portion of the particles are ionized. Heating a gas may ionize its molecules or atoms , thus turning it into a plasma, which contains charged particles: positive ions and negative electrons or ions...

 or in a magnetized plasma parallel to the magnetic field. For a single species plasma, the waves are dispersionless () with a speed (in the long wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

 limit) given by
where is Boltzmann's constant, is the mass of the ion, is its charge, is the temperature of the electrons and is the temperature of the ions. Normally γe is taken to be unity, on the grounds that the thermal conductivity of electrons is large enough to keep them isothermal on the time scale of ion acoustic waves, and γi is taken to be 3, corresponding to one-dimensional motion. In collisionless plasmas, the electrons are often much hotter than the ions, in which case the second term in the numerator can be ignored.

Derivation

We derive the ion acoustic wave dispersion relation for a linearized fluid description of a plasma with multiple ion species. A subscript 0 denotes constant equilibrium quantities, and 1 denotes first-order perturbations. We assume the pressure perturbations for each species (electrons and ions) are a Polytropic process, namely for species s. Using the ion continuity equation, the ion momentum equation becomes
We relate the electric field to the electron density by the electron momentum equation:
We now neglect the left-hand side, which is due to electron inertia. This is valid for waves with frequencies much less than the electron plasma frequency. The resulting electric field is
Since we have already solved for the electric field, we cannot also find it from Poisson's equation. The ion momentum equation now relates for each species to :
We arrive at a dispersion relation via Poisson's equation:
The first bracketed term on the right is zero by assumption (charge-neutral equilibrium). We substitute for the electric field and rearrange to find.
defines the electron Debye length. The second term on the left arises from the term, and reflects the degree to which the perturbation is not charge-neutral. If is small we may drop this term. This approximation is sometimes called the plasma approximation.

We now work in Fourier space, and find
is the wave phase velocity. Substituting this into Poisson's equation gives us an expression where each term is proportional to . To find the dispersion relation for natural modes, we look for solutions for nonzero.

where , and . In general it is not possible to further simplify this expression. If is small (the plasma approximation), we can neglect the second term on the term, and the wave is dispersionless with independent of k.

Specific Examples

To illustrate some features of ion acoustic waves, we can consider some specific examples of the general dispersion relation given above. First, for a single ion species, we find

For any number of ion species, all of which are cold (), we obtain

A case of interest to nuclear fusion is an equimolar mixture of deuterium and tritium ions (). Let us specialize to full ionization (), equal temperatures (), polytrope exponents , and neglect the contribution. The dispersion relation becomes a quadratic in , namely:
where , is the atomic mass unit, and . Using we find the two roots are .

Damping

Ion acoustic waves are damped both by Coulomb collision
Coulomb collision
A Coulomb collision is a binary elastic collision between two charged particles interacting through their own Electric Field. As with any inverse-square law, the resulting trajectories of the colliding particles is a hyperbolic Keplerian orbit...

s and collisionless Landau damping. The Landau damping
Landau damping
In physics, Landau damping, named after its discoverer, the eminent Soviet physicist Lev Davidovich Landau, is the effect of damping of longitudinal space charge waves in plasma or a similar environment. This phenomenon prevents an instability from developing, and creates a region of stability in...

occurs on both electrons and ions, with the relative importance depending on parameters.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK