Inelastic scattering
Encyclopedia
In particle physics
and chemistry
, inelastic scattering is a fundamental scattering
process in which the kinetic energy of an incident particle is not conserved (in contrast to elastic scattering
). In an inelastic scattering process, some of the energy of the incident particle is lost or gained. Although the term is historically related to the concept of inelastic collision
in dynamics, the two concepts are quite distinct; the latter refers to processes in which the total kinetic energy is not conserved. In general, scattering due to inelastic collisions will be inelastic, but, since elastic collisions often transfer kinetic energy between particles, scattering due to elastic collisions can also be inelastic, as in Compton scattering
(see below).
When an electron
is the incident particle, the probability of inelastic scattering, depending on the energy of the incident electron, is usually smaller than that of elastic scattering. Thus in the case of gas electron diffraction
, reflection high-energy electron diffraction (RHEED), and transmission electron diffraction, because the energy of the incident electron is high, the contribution of inelastic electron scattering can be ignored. Deep inelastic scattering
of electrons from protons provided the first direct evidence for the existence of quark
s.
When a photon
is the incident particle, the inelastic scattering process is called Raman scattering
. In this scattering process, the incident photon interacts with matter (gas, liquid, and solid) and the frequency of the photon is shifted to red or blue. A red shift can be observed when part of the energy of the photon is transferred to the interacting matter, where it adds to its internal energy. The blue shift can be observed when internal energy of the matter is transferred to the photon; this process is called anti-Raman scattering.
Inelastic scattering is seen in the interaction between an electron and a photon. When a high-energy photon collides with a free electron and transfers energy, the process is called Compton scattering. Furthermore, when an electron with relativistic energy collides with an infrared or visible photon, the electron gives energy to the photon; this process is called inverse Compton scattering.
Inelastic scattering is common in molecular collisions. Any collision which leads to a chemical reaction
will be inelastic, but the term inelastic scattering is reserved for those collisions which do not result in reactions. There is a transfer of energy between the translational mode (kinetic energy) and rotational and vibrational modes.
If the transferred energy is small compared to the incident energy of the scattered particle, one speaks of quasielastic scattering
.
Particle physics
Particle physics is a branch of physics that studies the existence and interactions of particles that are the constituents of what is usually referred to as matter or radiation. In current understanding, particles are excitations of quantum fields and interact following their dynamics...
and chemistry
Chemistry
Chemistry is the science of matter, especially its chemical reactions, but also its composition, structure and properties. Chemistry is concerned with atoms and their interactions with other atoms, and particularly with the properties of chemical bonds....
, inelastic scattering is a fundamental scattering
Scattering
Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of...
process in which the kinetic energy of an incident particle is not conserved (in contrast to elastic scattering
Elastic scattering
In scattering theory and in particular in particle physics, elastic scattering is one of the specific forms of scattering. In this process, the kinetic energy of the incident particles is conserved, only their direction of propagation is modified .-Electron elastic scattering:When an alpha particle...
). In an inelastic scattering process, some of the energy of the incident particle is lost or gained. Although the term is historically related to the concept of inelastic collision
Inelastic collision
An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved.In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energy of the atoms, causing a heating effect, and the bodies are deformed.The molecules of a gas...
in dynamics, the two concepts are quite distinct; the latter refers to processes in which the total kinetic energy is not conserved. In general, scattering due to inelastic collisions will be inelastic, but, since elastic collisions often transfer kinetic energy between particles, scattering due to elastic collisions can also be inelastic, as in Compton scattering
Compton scattering
In physics, Compton scattering is a type of scattering that X-rays and gamma rays undergo in matter. The inelastic scattering of photons in matter results in a decrease in energy of an X-ray or gamma ray photon, called the Compton effect...
(see below).
When an electron
Electron
The electron is a subatomic particle with a negative elementary electric charge. It has no known components or substructure; in other words, it is generally thought to be an elementary particle. An electron has a mass that is approximately 1/1836 that of the proton...
is the incident particle, the probability of inelastic scattering, depending on the energy of the incident electron, is usually smaller than that of elastic scattering. Thus in the case of gas electron diffraction
Gas electron diffraction
Gas electron diffraction is one of the applications of electron diffraction techniques. The target of this method is the determination of the structure of gaseous molecules i.e...
, reflection high-energy electron diffraction (RHEED), and transmission electron diffraction, because the energy of the incident electron is high, the contribution of inelastic electron scattering can be ignored. Deep inelastic scattering
Deep Inelastic Scattering
Deep inelastic scattering is the name given to a process used to probe the insides of hadrons , using electrons, muons and neutrinos. It provided the first convincing evidence of the reality of quarks, which up until that point had been considered by many to be a purely mathematical phenomenon...
of electrons from protons provided the first direct evidence for the existence of quark
Quark
A quark is an elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. Due to a phenomenon known as color confinement, quarks are never directly...
s.
When a photon
Photon
In physics, a photon is an elementary particle, the quantum of the electromagnetic interaction and the basic unit of light and all other forms of electromagnetic radiation. It is also the force carrier for the electromagnetic force...
is the incident particle, the inelastic scattering process is called Raman scattering
Raman scattering
Raman scattering or the Raman effect is the inelastic scattering of a photon. It was discovered by Sir Chandrasekhara Venkata Raman and Kariamanickam Srinivasa Krishnan in liquids, and by Grigory Landsberg and Leonid Mandelstam in crystals....
. In this scattering process, the incident photon interacts with matter (gas, liquid, and solid) and the frequency of the photon is shifted to red or blue. A red shift can be observed when part of the energy of the photon is transferred to the interacting matter, where it adds to its internal energy. The blue shift can be observed when internal energy of the matter is transferred to the photon; this process is called anti-Raman scattering.
Inelastic scattering is seen in the interaction between an electron and a photon. When a high-energy photon collides with a free electron and transfers energy, the process is called Compton scattering. Furthermore, when an electron with relativistic energy collides with an infrared or visible photon, the electron gives energy to the photon; this process is called inverse Compton scattering.
Inelastic scattering is common in molecular collisions. Any collision which leads to a chemical reaction
Chemical reaction
A chemical reaction is a process that leads to the transformation of one set of chemical substances to another. Chemical reactions can be either spontaneous, requiring no input of energy, or non-spontaneous, typically following the input of some type of energy, such as heat, light or electricity...
will be inelastic, but the term inelastic scattering is reserved for those collisions which do not result in reactions. There is a transfer of energy between the translational mode (kinetic energy) and rotational and vibrational modes.
If the transferred energy is small compared to the incident energy of the scattered particle, one speaks of quasielastic scattering
Quasielastic scattering
In physics, quasielastic scattering designates a limiting case of inelastic scattering, characterized by energy transfers being small compared to the incident energy of the scattered particles.The term was originally coined in nuclear physics....
.