Harmonious coloring
Encyclopedia
In graph theory
Graph theory
In mathematics and computer science, graph theory is the study of graphs, mathematical structures used to model pairwise relations between objects from a certain collection. A "graph" in this context refers to a collection of vertices or 'nodes' and a collection of edges that connect pairs of...

, a harmonious coloring is a (proper) vertex coloring
Graph coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the...

 in which every pair of colors appears on at most one pair of adjacent vertices. The harmonious chromatic number χH(G) of a graph G is the minimum number of colors needed for any harmonious coloring of G.

Every graph has a harmonious coloring, since it suffices to assign every vertex a distinct color; thus χH(G) ≤ |V(G)|. There trivially exist graphs G with χH(G) > χ(G) (where χ is the chromatic number); one example is the path of length 2, which can be 2-colored but has no harmonious coloring with 2 colors.

Some properties of χH(G):
  1. χH(Tk,3) = ⌈(3/2)(k+1)⌉, where Tk,3 is the complete k-ary tree
    Glossary of graph theory
    Graph theory is a growing area in mathematical research, and has a large specialized vocabulary. Some authors use the same word with different meanings. Some authors use different words to mean the same thing. This page attempts to keep up with current usage....

    with 3 levels. (Mitchem 1989)


Harmonious coloring was first proposed by Harary and Plantholt (1982).
Still very little is known about it.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK