GRIA2
Encyclopedia
Glutamate receptor 2 is a protein
Protein
Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form, facilitating a biological function. A polypeptide is a single linear polymer chain of amino acids bonded together by peptide bonds between the carboxyl and amino groups of...

 that in humans is encoded by the GRIA2 gene
Gene
A gene is a molecular unit of heredity of a living organism. It is a name given to some stretches of DNA and RNA that code for a type of protein or for an RNA chain that has a function in the organism. Living beings depend on genes, as they specify all proteins and functional RNA chains...

.

Function

Glutamate receptor
Glutamate receptor
Glutamate receptors are synaptic receptors located primarily on the membranes of neuronal cells. Glutamate is one of the 20 amino acids used to assemble proteins and as a result is abundant in many areas of the body, but it also functions as a neurotransmitter and is particularly abundant in the...

s are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. This gene product belongs to a family of glutamate receptors that are sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and function as ligand-activated cation channels. These channels are assembled from 4 related subunits, GRIA1-4. The subunit encoded by this gene (GRIA2) is subject to RNA editing (CAG->CGG; Q->R) within the second transmembrane domain, which is thought to render the channel impermeable to Ca(2+). Human and animal studies suggest that pre-mRNA editing is essential for brain function, and defective GRIA2 RNA editing at the Q/R site may be relevant to amyotrophic lateral sclerosis (ALS) etiology. Alternative splicing, resulting in transcript variants encoding different isoforms, has been noted for this gene, which includes the generation of flip and flop isoforms that vary in their signal transduction properties.

Interactions

GRIA2 has been shown to interact
Protein-protein interaction
Protein–protein interactions occur when two or more proteins bind together, often to carry out their biological function. Many of the most important molecular processes in the cell such as DNA replication are carried out by large molecular machines that are built from a large number of protein...

 with SPTAN1
SPTAN1
Spectrin alpha chain, brain is a protein that in humans is encoded by the SPTAN1 gene.The spectrins are a family of widely-distributed cytoskeletal proteins which are involved in actin crosslinking. The protein enocoded by this gene is a spectrin alpha-chain which heterodimerizes with...

, GRIP1
GRIP1 (gene)
Glutamate receptor-interacting protein 1 is a protein that in humans is encoded by the GRIP1 gene.-Interactions:GRIP1 has been shown to interact with GRIA4, Metabotropic glutamate receptor 3, GRIK2, GRIK3, GRIPAP1, GRIA2 and GRIA3....

 and PICK1
PICK1
PRKCA-binding protein is a protein that in humans is encoded by the PICK1 gene.-Interactions:PICK1 has been shown to interact with HER2/neu, ACCN2, Metabotropic glutamate receptor 7, BNC1, Metabotropic glutamate receptor 3, GRIA4, Dopamine transporter, GRIK1, GRIK2, GRIK3, GRIA2 and GRIA3.-Further...

.

RNA editing

Several ion channels and neurotransmitters receptors pre-mRNA
Messenger RNA
Messenger RNA is a molecule of RNA encoding a chemical "blueprint" for a protein product. mRNA is transcribed from a DNA template, and carries coding information to the sites of protein synthesis: the ribosomes. Here, the nucleic acid polymer is translated into a polymer of amino acids: a protein...

 as substrates for ADAR
ADAR
Double-stranded RNA-specific adenosine deaminase is an enzyme that in humans is encoded by the ADAR gene.-Further reading:...

s. This includes 5 subunits of the glutamate receptor ionotropic AMPA glutamate receptor subunits (Glur2
Metabotropic glutamate receptor 2
Metabotropic glutamate receptor 2 is a protein that in humans is encoded by the GRM2 gene.-PAMs:The development of subtype-2-selective positive allosteric modulators experienced steady advance in recent years...

, Glur3
Metabotropic glutamate receptor 3
Metabotropic glutamate receptor 3 is a protein that in humans is encoded by the GRM3 gene.-Ligands:Though truly mGluR3 selective agents still await their discovery, mixed mGluR2/3 ligands with selectivity over other mGluR-subtypes are known...

, Glur4
Metabotropic glutamate receptor 4
Metabotropic glutamate receptor 4 is a protein that in humans is encoded by the GRM4 gene.Together with GRM6, GRM7 and GRM8 it belongs to group III of the metabotropic glutamate receptor family. Group III receptors are linked to the inhibition of the cyclic AMP cascade.Activation of GRM4 has...

) and kainate receptor
Kainate receptor
Kainate receptors, or KARs, are non-NMDA ionotropic receptors which respond to the neurotransmitter glutamate. They were first identified as a distinct receptor type through their selective activation by the agonist kainate, a drug first isolated from red algae Digenea simplex. KARs are less well...

 subunits (Glur5
Metabotropic glutamate receptor 5
Metabotropic glutamate receptor 5 is a protein that in humans is encoded by the GRM5 gene.- Function :The amino acid L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors...

, Glur6
Metabotropic glutamate receptor 6
Glutamate receptor, metabotropic 6, also known as GRM6, is a protein which in humans is encoded by the GRM6 gene.- Function :L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors...

). Glutamate-gated ion channels are made up of four subunits per channel, with each subunit contributing to the pore loop structure. The pore loop structure is related to that found in K+ channels (e.g., human Kv1.1 channel). The human Kv1.1 channel pre mRNA is also subject to A to I RNA editing. The function of the glutamate receptors is in the mediation of fast neurotransmission to the brain. The diversity of the subunits is determined, as well as RNA splicing by RNA editing events of the individual subunits. This give rise to the necessarily high diversity of these receptors. Glur2 is a gene product of the pre-mRNA of the GRIA2 gene and subject to RNA editing.

Type

The type of RNA editing that occurs in the pre-mRNA of GluR-2 is Adenosine-to-Inosine (A-to-I) editing. [11]
A-to-I RNA editing is catalyzed by a family of adenosine deaminases acting on RNA (ADARs) that specifically recognize adenosines within double-stranded regions of pre-mRNAs and deaminate them to inosine. Inosines are recognised as guanosine by the cells translational machinery. There are three members of the ADAR family ADARs 1-3, with ADAR1 and ADAR2 being the only enzymatically active members. ADAR3 is thought to have a regulatory role in the brain. ADAR1 and ADAR2 are widely expressed in tissues, while ADAR3 is restricted to the brain. The double-stranded regions of RNA are formed by base-pairing between residues in the close to region of the editing site, with residues usually in a neighboring intron, but can be an exonic sequence. The region that base pairs with the editing region is known as an Editing Complementary Sequence (ECS).
ADARs bind interact directly with the dsRNA substrate via their double-stranded RNA binding domains. If an editing site occurs within a coding sequence, it can result in a codon change. This can lead to translation of a protein isoform due to a change in its primary protein structure. Therefore, editing can also alter protein function. A-to-I editing occurs in a non coding RNA sequences such as introns, untranslated regions (UTRs), LINEs, SINEs (especially Alu repeats). The function of A to I editing in these regions is thought to involve creation of splice sites and retention of RNAs in the nucleus amongst others.

Location

In the pre-mRNA of GluR-2 the editing site Q/R is found at amino acid position 604. This location is in the pore loop region deep within the ion channel in the proteins membrange segment 2. Editing results in a change from a glutamine(Q) codon to an Arginine (R) codon.
Editing at the R/G site, located at amino acid position 764 results in a codon change from arginine to glycine.
All editing in glutamate receptors occurs in double-stranded RNAs (dsRNAs), which form due to complementary base pairing between the region of the editing site within the exon and an ECS within an intron sequence.
R/G site

Regulation

Editing occurs at the Q/R site at a frequency of 100% of GluR2 transcripts in the brain. It is the only known editing site to be edited at a frequency of 100%. However some striatal and cortical neurons are edited less frequently. This has been suggested as a reason for the higher level of excitotoxicity of these particular neurons. The R/G site is developmentally regulated, being largely unedited in the embryonic brain with levels rising after birth.(ref 53)

Structure

Editing results in a codon change from a glutamine codon (CAG) to an arginine codon (CIG). Editing at R/G results in a codon change. The region of the editing site is known to be the region that controls divalent cation permeability. The other ionotropic AMPA glutamate receptors have a genomically encoded have a glutamine residue, while GluR2 has an arginine.

Function

RNA editing of the GluR-2 (GluR-B) pre-mRNA is the best-characterised example of A-to-I editing. Activated by L-Glutamate, a major excitatory neurotranmsitter in vertebrates central nervous systems, it acts as an agonist at NMDA, AMPA, and kainate neurotransmitters.(103) Activation results in neuronal cation entry (CA2+), causing membrane depolarisation required for the process of excitiatoy neurotransmission.
The calcium permeability of these receptor channels is required for many important events in the CNS, including long-term potentiation.(104)
Since editing occurs in nearly 100% of transcripts and is necessary for life, it is often wondered why edited GluR-B is not genomically encoded instead of being derived by RNA editing. The answer is unknown.

RNA editing at the Q/R site is thought to alter the permeability of the channel rendering it impermeable to Ca2+. The Q/R site also occurs in the Kainate receptors GluR5 and GluR6. Editing at the Q/R site determines the calcium permeability of the channel, with channels containg the edited form being less permeable to calcium. This differs from GluR6 where editing of the Q/R site may increase calcium permeability of the channel especially if the I/V and Y/C sites are also edited. Therefore, the main function of editing is therefore in regulation of electrophysiology of the channel.
Editing in some striatal and cortical neurons is more likely to be subject to excitotoxicity, though to be due to less than 100% editing of these particular neurons. Editing also has several other function effects. Editing alters the maturation and assembly of the channel, with the unedited form having a tendency to tetramerize and then is transported to the synapse. However, the edited version is assembled as a monomer and resides mainly in the endoplasmic reticulum
Endoplasmic reticulum
The endoplasmic reticulum is an organelle of cells in eukaryotic organisms that forms an interconnected network of tubules, vesicles, and cisternae...

. The arginine residue in the pore loop of GluR-2 receptor is thought to belong to a retention signal for the endoplasmic reticulum. Therefore, editing - since it occurs at 100% frequency - inhibits the availability of the channel at the synapse. This process occurs before assembly of the channels, thereby preventing glur-2-forming homeric channels, which could interfere with synaptic signalling.

Editing also occurs at the R/G site. Editing at the R/G sites results in variation in the rate that the receptor recovers from desensitisation. Editing at these sites results in faster recovery time from desensitisation

Dysregulation

Amyotrophic Lateral Sclerosis

Many human and animal studies have determined that RNA editing of the Q/R site in GluR2 pre-mRNA is necessary for normal brain function. Defective editing has been linked to several conditions such as amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis , also referred to as Lou Gehrig's disease, is a form of motor neuron disease caused by the degeneration of upper and lower neurons, located in the ventral horn of the spinal cord and the cortical neurons that provide their efferent input...

(ALS). ALS effects 1 in 2000 people, usually fatal in 1–5 years, with onset in the majority of cases being sporadic and minority being familial. With these conditions motor neurons degenerate leading to eventual paralysis and respiratory failure. Glutamate excitotoxicity is known to contribute to the spread of the sporadic condition. Glutamate levels are increased up 40%, suggesting that activation of glutamate receptors could be the reason for this causing increase Ca influx and then neuronal death. Since decrease nor loss of editing at Q/R site would lead to increase in calcium permeability. In diseased motor neurons editing levels of Glur 2 (62-100%) at this site was discovered to be reduced.
Abnormal editing is thought to be specific for this condition, as editing levels have not been found to be decreased in spinal and bulbar muscular atrophy. Q/R editing is not the only mechanism involved, as editing occurs only in spinal motor neurons not in upper spinal neurons. Also, unknown is editing dysregulation involved in the initiation of the condition, or whether it occurs during pathogenesis.

Epilepsy

In mice, failure of editing has been shown experimentally to lead to epileptic seizures and then death within 3 weeks after birth. Therefore, the Q/R editing site has been determined to be essential. Why editing exists at this site instead of a genomically encoded arginine is unknown since nearly 100% of transcripts are edited.

Cancer

Decreased editing at the Q/R site is also found in some human brain tumors. Reduction of ADAR2 expression is thought to be associated with epileptic seizures associated with malignant gliomas.

External links

  • http://darned.ucc.ie
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK