Continuum (set theory)
Encyclopedia
In the mathematical field of set theory
Set theory
Set theory is the branch of mathematics that studies sets, which are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics...

, the continuum means the real numbers, or the corresponding cardinal number
Cardinal number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality of sets. The cardinality of a finite set is a natural number – the number of elements in the set. The transfinite cardinal numbers describe the sizes of infinite...

, .

The cardinality of the continuum
Cardinality of the continuum
In set theory, the cardinality of the continuum is the cardinality or “size” of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by |\mathbb R| or \mathfrak c ....

is the size of the real numbers. The continuum hypothesis
Continuum hypothesis
In mathematics, the continuum hypothesis is a hypothesis, advanced by Georg Cantor in 1874, about the possible sizes of infinite sets. It states:Establishing the truth or falsehood of the continuum hypothesis is the first of Hilbert's 23 problems presented in the year 1900...

 is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers, .

Linear continuum

According to Raymond Wilder (1965) there are four axioms that make a set C and the relation < into a linear continuum:
  • C is simply ordered with respect to <.
  • If [A,B] is a cut of C, then either A has a last element or B has a first element.(compare Dedekind cut
    Dedekind cut
    In mathematics, a Dedekind cut, named after Richard Dedekind, is a partition of the rationals into two non-empty parts A and B, such that all elements of A are less than all elements of B, and A contains no greatest element....

    )
  • There exists a non-empty, countable subset S of C such that, if x,yC such that x < y, then there exists zS such that x < z < y. (separability axiom)
  • C has no first element and no last element. (Unboundedness axiom
    Bounded set
    In mathematical analysis and related areas of mathematics, a set is called bounded, if it is, in a certain sense, of finite size. Conversely, a set which is not bounded is called unbounded...

    )

These axioms characterize the order type
Order type
In mathematics, especially in set theory, two ordered sets X,Y are said to have the same order type just when they are order isomorphic, that is, when there exists a bijection f: X → Y such that both f and its inverse are monotone...

 of the real number line.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK