Chain shuttling polymerization
Encyclopedia
Chain Shuttling Polymerization is a dual-catalyst method for producing block copolymers with alternating or variable tacticity
Tacticity
Tacticity is the relative stereochemistry of adjacent chiral centers within a macromolecule. The practical significance of tacticity rests on the effects of tacticity on the physical properties of the polymer...

. The desired effect of this method is to generate hybrid polymers that bear the properties of both polymer chains, such as a high melting point accompanied by high elasticity. It is a relatively new method, the first instance of its use being reported by Arriola et al. in May of 2006.

Olefin Polymerization

Olefin polymers
Polyolefin
A polyolefin is a polymer produced from a simple olefin as a monomer. For example, polyethylene is the polyolefin produced by polymerizing the olefin ethylene. An equivalent term is polyalkene; this is a more modern term, although polyolefin is still used in the petrochemical industry...

 (such as polypropylene
Polypropylene
Polypropylene , also known as polypropene, is a thermoplastic polymer used in a wide variety of applications including packaging, textiles , stationery, plastic parts and reusable containers of various types, laboratory equipment, loudspeakers, automotive components, and polymer banknotes...

 and polyethylene
Polyethylene
Polyethylene or polythene is the most widely used plastic, with an annual production of approximately 80 million metric tons...

) have seen widespread use in the plastics industry in the past 50 years. A way to enhance the properties of these olefin polymers was first discovered by the scientists Karl Ziegler
Karl Ziegler
Karl Waldemar Ziegler was a German chemist who won the Nobel Prize in Chemistry in 1963, with Giulio Natta, for work on polymers. The Nobel Committee recognized his "excellent work on organometallic compounds [which]...led to new polymerization reactions and ... paved the way for new and highly...

 and Giulio Natta
Giulio Natta
Giulio Natta was an Italian chemist and Nobel laureate. He won a Nobel Prize in Chemistry in 1963 with Karl Ziegler for work on high polymers.-Early years:...

. Ziegler discovered the original Titanium based catalyst essential for olefin polymerization, while Natta used the catalyst to alter and control the stereochemistry
Stereochemistry
Stereochemistry, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms within molecules. An important branch of stereochemistry is the study of chiral molecules....

 (tacticity) of the olefin polymers (hence Ziegler-Natta catalyst
Ziegler-Natta catalyst
A Ziegler–Natta catalyst is a catalyst used in the synthesis of polymers of 1-alkenes . Three types of Ziegler–Natta catalysts are currently employed:* Solid and supported catalysts based on titanium compounds...

). By controlling the tacticity of the polymer, a chain can, for example, either be semi crystalline or amorphous, rigid or elastic, heat resistant or have a low glass transition temperature. Much research since has been dedicated to predicting and creating polymers based on this work. Living polymerization
Living polymerization
In polymer chemistry, living polymerization is a form of addition polymerization where the ability of a growing polymer chain to terminate has been removed. This can be accomplished in a variety of ways. Chain termination and chain transfer reactions are absent and the rate of chain initiation is...

 is the term coined to describe the use of specially made catalysts (often involving transition metal centers) in olefin polymerization, since the polymer chains self propagate in the presence of the catalyst until intentionally terminated.

Living polymerization, however, produces only one type of tacticity per catalyst. While the specific tacticity can be controlled by altering the type of catalyst used, creating a block copolymer requires that the polymerization be terminated, the catalyst destroyed, and that the chain re-propagate using another catalyst that produces the desired stereochemistry. Such manipulations are usually difficult, however.

Method

Chain shuttling polymerization makes use of two catalysts and a chain shuttling agent (CSA) to generate copolymers of alternating tacticity
Tacticity
Tacticity is the relative stereochemistry of adjacent chiral centers within a macromolecule. The practical significance of tacticity rests on the effects of tacticity on the physical properties of the polymer...

. Catalyst 1 (Cat1) propagates a polyolefin of a desired tacticity. Catalyst 2 (Cat2) generates another chain of a different tacticity. The two chains are allowed to co-propagate in a single reactor in the same living polymer fashion as before. To alternate the tacticity, a CSA will transfer
Chain transfer
Chain transfer is a polymerization reaction by which the activity of a growing polymer chain is transferred to another molecule.Chain transfer reactions reduce the average molecular weight of the final polymer...

 the polymer chain from its respective catalyst. The CSA can then bind to Cat2 and attach the chain to Cat2. When the chain attaches to Cat2, the polymerization of that chain continues, except it now propagates with the tacticity dictated by Cat2, not Cat1. The general result is that the chain will alternate between two different tacticities. As the forward and reverse reactions occur, the polymer chain is “shuttled” back and forth between the two catalysts and a block copolymer is formed.
The shuttling of chains back and forth from catalysts via a CSA can be viewed as a competing chemical equilibrium
Chemical equilibrium
In a chemical reaction, chemical equilibrium is the state in which the concentrations of the reactants and products have not yet changed with time. It occurs only in reversible reactions, and not in irreversible reactions. Usually, this state results when the forward reaction proceeds at the same...

. Note that the forward and reverse reactions of CSA binding and leaving either Cat1 or Cat2 are possible. This competition means that a chain can leave Cat1 via a CSA and the reattach to Cat1, polymerizing the same tacticity. The rate
Reaction rate
The reaction rate or speed of reaction for a reactant or product in a particular reaction is intuitively defined as how fast or slow a reaction takes place...

at which the reattachment of Cat1 occurs can be controlled by altering the relative concentrations of Cat1, Cat2 and CSA. For example, if one wanted to produce a polymer with the properties mainly resulting from the use of Cat1 and only wanted to influence its properties slightly by the presence of Cat2, a greater concentration of Cat1 would be used than for Cat2. The rate of alternation between tacticity can be controlled by altering the concentration of CSA relative to Cat1 and Cat2; having a higher concentration of CSA means that the chains will shuttle back and forth more rapidly, creating shorter units of alternating tacticity.

Advantages

The first clear advantage of chain shuttling is that one can design copolymers with more desirable traits. A polymer that is normally semi crystalline and rigid can be altered so that it has a lower glass transition temperature. An amorphous, elastic polymer membrane can be altered to have a higher melting point. The technique opens the door for tailor-made polymers to be widely accessible and simple to make inexpensively.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK