Biochemical switches in the cell cycle
Encyclopedia
A series of biochemical switches control transitions between and within the various phases of the cell cycle
Cell cycle
The cell cycle, or cell-division cycle, is the series of events that takes place in a cell leading to its division and duplication . In cells without a nucleus , the cell cycle occurs via a process termed binary fission...

. The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases. The phases include the G1 and G2 phases, DNA replication
DNA replication
DNA replication is a biological process that occurs in all living organisms and copies their DNA; it is the basis for biological inheritance. The process starts with one double-stranded DNA molecule and produces two identical copies of the molecule...

 or S phase, and the actual process of cell division, mitosis
Mitosis
Mitosis is the process by which a eukaryotic cell separates the chromosomes in its cell nucleus into two identical sets, in two separate nuclei. It is generally followed immediately by cytokinesis, which divides the nuclei, cytoplasm, organelles and cell membrane into two cells containing roughly...

 or M phase. During the M phase, the chromosomes separate and cytokinesis occurs.

The switches maintain the orderly progression of the cell cycle and act as checkpoints to ensure that each phase has been properly completed before progression to the next phase. For example, Cdk, or cyclin dependent kinase, is a major control switch for the cell cycle and it allows the cell to move from G1 to S or G2 to M by adding phosphate to protein substrates. Such multi-component (involving multiple inter-linked proteins) switches have been shown to generate decisive, robust (and potentially irreversible) transitions and trigger stable oscillations. As a result, they are a subject of active research that tries to understand how such complex properties are wired into biological control systems.

Feedback loops

Many biological circuits produce complex outputs by exploiting one or more feedback
Feedback
Feedback describes the situation when output from an event or phenomenon in the past will influence an occurrence or occurrences of the same Feedback describes the situation when output from (or information about the result of) an event or phenomenon in the past will influence an occurrence or...

 loops. In a sequence of biochemical events, feedback would refer to a downstream element in the sequence (B in the image on the left) affecting some upstream component (A in the image on the left) to affect its own production or activation (output) in the future. If this element acts to enhance its own output, then it engages in positive feedback
Positive feedback
Positive feedback is a process in which the effects of a small disturbance on a system include an increase in the magnitude of the perturbation. That is, A produces more of B which in turn produces more of A. In contrast, a system that responds to a perturbation in a way that reduces its effect is...

 (blue arrow). A positive feedback loop is also known as a self-reinforcing loop, and it is possible that these loops can be part of a larger loop, as this is characteristic of regulatory circuits..

Conversely, if this element leads to its own inhibition through upstream elements, this is canonically negative feedback
Negative feedback
Negative feedback occurs when the output of a system acts to oppose changes to the input of the system, with the result that the changes are attenuated. If the overall feedback of the system is negative, then the system will tend to be stable.- Overview :...

 (red blunt arrow). A negative feedback loop is also known as a balancing loop, and it may be common to see oscillations in which a delayed negative feedback signal is used to maintain homeostatic balance in the system..

Feedback loops can be used for amplification (positive) or self-correction (negative). The right combination of positive and negative feedback loops can generate ultrasensitivity and bistability
, which in turn can generate decisive transitions and oscillations.

Combination of Positive and Negative Feedback Loops

Positive and negative feedback loops do not always operate distinctly. In the mechanism of biochemical switches, they work together to create a flexible system. For example, according to Pfeuty et al., to overcome a drawback in biochemical systems, positive feedback regulation loops may interact with negative regulation loops to facilitate escape from stable states..The coexistence of two stable states is known as bistability, which is often the result of positive feedback regulations.
An example that reveals the interaction of the multiple negative and positive feedback loops is the activation of cyclin-dependent protein kinases, or Cdks14. Positive feedback loops play a role by switching cells from low to high Cdk-activity. The interaction between the two types of loops is evident in mitosis. While positive feedback initiates mitosis, a negative feedback loop promotes the inactivation of the cyclin-dependent kinases by the anaphase-promoting complex. This example clearly shows the combined effects that positive and negative feedback loops have on cell-cycle regulation.

Ultrasensitivity

An "all-or-none" response to a stimulus is termed ultrasensitivity
Ultrasensitivity
In molecular biology, ultrasensitivity describes an output response that is more sensitive to stimulus change than the hyperbolic Michaelis-Menten response...

. In other words, a very small change in stimulus causes a very large change in response, producing a sigmoidal dose-response curve. An ultrasensitive response is described by the general equation V = S^n/S^n +Km, known as the Hill equation, when n, the Hill coefficient, is more than 1. The steepness of the sigmoidal curve depends on the value of n. A value of n = 1 produces a hyperbolic or Michaelian response. Ultrasensitivity is achieved in a variety of systems; a notable example is the cooperative binding of the enzyme Hemoglobin
Hemoglobin
Hemoglobin is the iron-containing oxygen-transport metalloprotein in the red blood cells of all vertebrates, with the exception of the fish family Channichthyidae, as well as the tissues of some invertebrates...

 to its substrate. Since an ultrasensitive response is almost ‘digital’, it can be used to amplify a response to a stimulus or cause a decisive sharp transition (between ‘off’ and ‘on’ states).

Ultrasensitivity certainly plays a large role in cell-cycle regulation. For example, Cdk1 and Wee1 can mitotic regulators and they are able to inactivate each other through inhibitory phosphorylation. In essence, this represents a double negative feedback loop in which both regulators inactivate each other. According to Kim et al. (2007), there must be an ultra-sensitive element to generate a bistable response. It turns out that Wee1 has an ultrasensitive response to Cdk1, and this likely arises because of substrate competition among the various phosphorylation sites on Wee1.This example shows the role of ultrasensitivity in biochemical switches..

Bistability

Bistability implies hysteresis, and hysteresis implies multistability. Multistability indicates the presence of two or more stable states for a given input. Therefore, bistability
Bistability
Bistability is a fundamental phenomenon in nature. Something that is bistable can be resting in either of two states. These rest states need not be symmetric with respect to stored energy...

 is the ability of a system to exist in two steady states. In other words, there is a range of stimulus values for which the response can have two steady-state values. Bistability is accompanied by hysteresis
Hysteresis
Hysteresis is the dependence of a system not just on its current environment but also on its past. This dependence arises because the system can be in more than one internal state. To predict its future evolution, either its internal state or its history must be known. If a given input alternately...

, which means that the system approaches one of the two steady states preferentially depending on its history. Bistability requires feedback as well as an ultrasensitive circuit element.

Under the proper circumstances, positive and negative feedback loops can provide the conditions for bistability; for example, by having positive feedback coupled to an ultrasensitive response element with the circuit. A hysteretic bistable system can act as a robust reversible switch because it is harder for the system to transition between ‘on’ and ‘off’ states (compared to the equivalent monostable ultransensitive response). The system could also be poised such that one of the transitions is physically unattainable; for example, no amount of reduction in the stimulus will return the system to the ‘off’-state once it is already in the ‘on’ state. This would form a robust irreversible switch.

There is no one-to-one correspondence between network topology, since many networks have a similar input and output relationship. A network topology does not imply input or output, and similarly input or output does not imply network topology. It is for this reason that parameterization is very important for circuit function. If the dynamics of the input are comparable or faster than the response of the system, the response may appear hysteretic.

Three cell cycle switches are described below that achieve abrupt and/or irreversible transitions by exploiting some of the mechanisms described above.

The G1/S switch

The G1/S transition
G1/S transition
The G1/S transition is a stage in the cell cycle at the boundary between the G1 phase and the S phase.It is a "point of no return" beyond which the cell is committed to dividing; in yeast this is called START and in multicellular eukaryotes it is termed the restriction point....

, more commonly known as the Start checkpoint in budding yeast (the restriction point in other organisms) regulates cell cycle commitment. At this checkpoint, cells either arrest before DNA replication (due to limiting nutrients or a pheromone signal), prolong G1 (size control), or begin replication and progress through the rest of the cell cycle. The G1/S regulatory network or regulon in budding yeast includes the G1 cyclins Cln1, Cln2 and Cln3, Cdc28 (Cdk1), the transcription factors SBF and MBF, and the transcriptional inhibitor Whi5. Cln3 interacts with Cdk1 to initiate the sequence of events by phosphorylating a large number of targets, including SBF, MBF and Whi5. Phosphorylation of Whi5 causes it to translocate out of the nucleus, preventing it from inhibiting SBF and MBF. Active SBF/MBF drive the G1/S transition by turning on the B-type cyclins and initiating DNA replication, bud formation and spindle body duplication. Moreover, SBF/MBF drives expression of Cln1 and Cln2, which can also interact with Cdk1 to promote phosphorylation of its targets.

This G1/S switch was initially thought to function as a linear sequence of events starting with Cln3 and ending in S phase. However, the observation that any one of the Clns was sufficient to activate the regulon indicated that Cln1 and Cln2 might be able to engage positive feedback to activate their own transcription. This would result in a continuously accelerating cycle that could act as an irreversible bistable trigger. Skotheim et al. used single-cell measurements in budding yeast to show that this positive feedback does indeed occur. A small amount of Cln3 induces Cln1/2 expression and then the feedback loop takes over, leading to rapid and abrupt exit of Whi5 from the nucleus and consequently coherent expression of G1/S regulon genes. In the absence of coherent gene expression, cells take longer to exit G1 and a significant fraction even arrest before S phase, highlighting the importance of positive feedback in sharpening the G1/S switch.

The G1/S cell cycle checkpoint controls the passage of eukaryotic cells from the first gap phase, G1, into the DNA synthesis phase, S. In this switch in mammalian cells, there are two cell cycle kinases that help to control the checkpoint: cell cycle kinases CDK4/6-cyclin D and CDK2-cyclin E.. The transcription complex that includes Rb and E2F is important in controlling this checkpoint. In the first gap phase, the Rb-HDAC repressor complex binds to the E2F-DP1 transcription factors, therefore inhibiting the downstream transcription. The phosphorylation of Rb by CDK4/6 and CDK2 dissociates the Rb-repressor complex and serves as an on/off switch for the cell cycle. Once Rb is phosphorylated, the inhibition is released on the E2F transcriptional activity. This allows for the transcription of S phase genes encoding for proteins that amplify the G1 to S phase switch.

Many different stimuli apply checkpoint controls including TGFb, DNA damage, contact inhibition, replicative senescence, and growth factor withdrawal. The first four act by inducing members of the INK4 or Kip/Cip families of cell cycle kinase inhibitors. TGFb inhibits the transcription of Cdc25A, a phosphatase that activates the cell cycle kinases, and growth factor withdrawal activates GSK3b, which phosphorylates cyclin D. This leads to its rapid ubiquitination..

The G2/M switch

This transition is commenced by E2F-mediated transcription of cyclin A, forming the cyclin A-Cdk2 complex. This is useful in regulating events in prophase. In order to proceed past prophase, the cyclin B-Cdk1 complex (first discovered as MPF or M-phase promoting factor) is activated by Cdc 25, a protein phosphatase1. As mitosis starts, the nuclear envelope disintegrates, chromosomes condense and become visibile, and the cells prepares for division. The Cyclin B-Cdk1 activation results in nuclear envelope breakdown, which is a characteristic of the initiation of mitosis1.It is evident that the cyclin A and B complexes with Cdks help regulate mitotic events at the G2/M transition.

As mentioned above, entry into mitosis is controlled by the Cyclin B
Cyclin B
Cyclin B is a member of the cyclin family.Cyclin B is a mitotic cyclin. The amount of cyclin B and the activity of the cyclin B-Cdk complex rise through the cell cycle until mitosis, where they fall abruptly due to degradation of cyclin B...

-Cdk1
Cdk1
Cyclin dependent kinase 1 also known as Cdk1 or cell division control protein 2 homolog is a highly conserved protein that functions as a serine/threonine kinase, and is a key player in cell cycle regulation. It has been highly studied in the budding yeast S. cerevisiae, and the fission yeast S....

 complex (first discovered as MPF
MPF
MPF may refer to:* Malta Police Force, the national police force of the Republic of Malta* Mauritius Police Force, the national police force of the Republic of Mauritius* Managed Package Framework, Microsoft technology...

 or M-phase promoting factor; Cdk1 is also known as Cdc2 in fission yeast and Cdc28 in budding yeast). This complex forms an element of an interesting regulatory circuit in which Cdk1 can phosphorylate and activate its activator, the phosphatase Cdc25
Cdc25
Cdc25 is a dual-specificity phosphatase first isolated from the yeast Schizosaccharomyces pombe as a cell cycle defective mutant. As with other cell cycle proteins such as Cdc2 and Cdc4, the "cdc" in its name refers to "cell division cycle".Dual-specificity phosphatases are considered a sub-class...

 (positive feedback), and phosphorylate and inactivate its inactivator, the kinase Wee1
Wee1
Wee1 is a nuclear kinase belonging to the Ser/Thr family of protein kinases in the fission yeast Schizosaccharomyces pombe . It has a molecular mass of 96 kDa and it is a key regulator of cell cycle progression....

 (double-negative feedback). It was suggested that this circuit could act as a bistable trigger with one stable steady state in G2 (Cdk and Cdc25 off, Wee1 on) and a second stable steady state in M phase (Cdk and Cdc25 active, Wee1 off). However, Wee1 is itself regulated by other factors, such as Cdr2.
Once cells are in mitosis, Cyclin B-Cdk1 activates the Anaphase-promoting complex
Anaphase-promoting complex
Anaphase-Promoting Complex, also called cyclosome , is an E3 ubiquitin ligase that marks target cell cycle proteins for degradation by the 26S proteasome. The APC/C is a large complex of 11–13 subunit proteins, including a cullin and RING subunit much like SCF...

 (APC), which in turn inactivates Cyclin B-Cdk1 by degrading Cyclin B, eventually leading to exit from mitosis. Coupling the bistable Cdk1 response function to the negative feedback from the APC could generate what is known as a relaxation oscillator
Relaxation oscillator
A relaxation oscillator is an oscillator based upon the behavior of a physical system's return to equilibrium after being disturbed. That is, a dynamical system within the oscillator continuously dissipates its internal energy...

, with sharp spikes of Cdk1 activity triggering robust mitotic cycles. However, in a relaxation oscillator, the control parameter moves slowly relative to the system’s response dynamics which may be an accurate representation of mitotic entry, but not necessarily mitotic exit.

It is necessary to inactivate the cyclin B-Cdk1 complex in order to exit the mitotic stage of the cell cycle. The cells can then return to the first gap phase G1 and wait until the cycle proceeds yet again.
In 2003 Pomerening et al. provided strong evidence for this hypothesis by demonstrating hysteresis and bistability in the activation of Cdk1 in the cytoplasmic extracts of Xenopus
Xenopus
Xenopus is a genus of highly aquatic frogs native to Sub-Saharan Africa. There are 19 species in the Xenopus genus...

 oocytes. They first demonstrated a discontinuous sharp response of Cdk1 to changing concentrations of non-destructible Cyclin B (to decouple the Cdk1 response network from APC-mediated negative feedback). However, such a response would be consistent with both a monostable, ultransensitive transition and a bistable transition. To distinguish between these two possibilities, they measured the steady-state levels of active Cdk1 in response to changing cyclin levels, but in two separate experiments, one starting with an interphase
Interphase
Interphase is the phase of the cell cycle in which the cell spends the majority of its time and performs the majority of its purposes including preparation for cell division. In preparation for cell division, it increases its size and makes a copy of its DNA...

 extract and one starting with an extract already in mitosis. At intermediate concentrations of cyclin they found two steady-state concentrations of active Cdk1. Which of the two steady states was occupied depended on the history of the system, i.e.whether they started with interphase or mitotic extract, effectively demonstrating hysteresis and bistability.

In the same year, Sha et al. independently reached the same conclusion revealing the hysteretic loop also using Xenopus laevis egg extracts. In this article, three predictions of the Novak-Tyson model were tested in an effort to conclude that hysteresis is the driving force for “cell-cycle transitions into and out of mitosis”. The predictions of the Novak-Tyson model are generic to all saddle-node bifurcations. Saddle-node bifurcations are extremely useful bifurcations in an imperfect world because they help describe biological systems which are not perfect. The first prediction was that the threshold concentration of cyclin to enter mitosis is higher than the threshold concentration of cyclin to exit mitosis, and this was confirmed by supplementing cycling egg extracts with non-degradable cyclin B and measuring the activation and inactivation threshold after the addition of cycloheximide (CHX), which is a protein synthesis inhibitor.. Furthermore, the second prediction of the Novak-Tyson model was also validated: unreplicated deoxyribonucleic acid, or DNA, increases the threshold concentration of cyclin that is required to enter mitosis. In order to arrive at this conclusion, cytostatic factor released extracts were supplemented with CHX, APH (a DNA polymerase inhibitor), or both, and non-degradable cyclin B was added. The third and last prediction that was tested and proven true in this article was that the rate of Cdc2 activation slows down near the activation threshold concentration of cyclin. These predictions and experiments demonstrate the toggle-like switching behavior that can be described by hysteresis in a dynamical system..

Metaphase-anaphase switch

In the transition from metaphase to anaphase
Spindle checkpoint
In order to preserve one cell's identity and its proper functioning, it is necessary to maintain constant the appropriate number of chromosomes after each cell division...

, it is crucial that sister chromatids
Sister chromatids
Sister chromatids are two identical copies of a chromatid connected by a centromere. Compare sister chromatids to homologous chromosomes, which are the two different copies of the same chromosome that diploid organisms inherit, one from each parent...

 are properly and simultaneously separated to opposite ends of the cell. Separation of sister-chromatids is initially strongly inhibited to prevent premature separation in late mitosis, but this inhibition is relieved through destruction of the inhibitory elements by the anaphase-promoting complex
Anaphase-promoting complex
Anaphase-Promoting Complex, also called cyclosome , is an E3 ubiquitin ligase that marks target cell cycle proteins for degradation by the 26S proteasome. The APC/C is a large complex of 11–13 subunit proteins, including a cullin and RING subunit much like SCF...

 (APC) once sister-chromatid bi-orientation is achieved. One of these inhibitory elements is securin
Securin
Securin is a protein involved in control of the metaphase-anaphase transition and anaphase onset. Following bi-orientation of chromosome pairs and inactivation of the spindle checkpoint system, the underlying regulatory system, which includes securin, produces an abrupt stimulus that induces highly...

, which prevents the destruction of cohesin
Cohesin
Cohesin is a protein complex that regulates the separation of sister chromatids during cell division, either mitosis or meiosis.- Structure :...

, the complex that holds the sister-chromatids together, by binding the protease separase
Separase
Separase is a cysteine protease responsible for triggering anaphase by hydrolysing cohesin which is the protein responsible for binding sister chromatids during metaphase. In humans, separase is encoded by the ESPL1 gene.- Discovery :...

 which targets Scc1, a subunit of the cohesin complex, for destruction. In this system, the phosphatase Cdc14
Cdc14
Cdc14 was defined by Hartwell in his famous screen for loci that control the cell cycle of Saccharomyces cerevisiae. Cdc14 was later shown to encode a protein phosphatase. Cdc14 is dual-specificity, which means it has serine/threonine and tyrosine-directed activity. A preference for serines...

 can remove an inhibitory phosphate from securin, thereby facilitating the destruction of securin by the APC, releasing separase. As shown by Uhlmann et al., during the attachment of chromosomes to the mitotic spindle the chromatids remain paired because cohesion between the sisters prevents separation..SY.; Ferrell JE. (2007), “Substrate competition as a source of ultrasensitivity in the activation of Wee1,” Cell 128(6): 1133-45 Cohesion is established during DNA replication and depends on cohesin, which is a multisubunit complex composed of Scc1, Scc3, Smc2, and Smc3. In yeast at the metaphase-to-anaphase transition, Scc1 dissociates from the chromosomes and the sister chromatids separate. This action is controlled by the Esp1 protein, which is tightly bound by the anaphase inhibitor Pds1 that is destroyed by the anaphase-promoting complex. In order to verify that Esp1 does play a role in regulating Scc1 chromosome association, cell strains were arrested in G1 with an alpha factor. These cells stayed in arrest during the development. Esp1-1 mutant cells were used and the experiment was repeated, and Scc1 successfully bound to the chromosomes and remained associated even after the synthesis was terminated. This was crucial in showing that with Esp1, Scc1 is hindered in its ability to become stably associated with chromosomes during G1, and Esp1 can in fact directly remove Scc1 from chromosomes.
It has been shown by Holt et al. that separase activates Cdc14, which in turn acts on securin, thus creating a positive feedback loop that increases the sharpness of the metaphase to anaphase transition and coordination of sister-chromatid separation. Holt et al. probed the basis for the effect of positive feedback in securin phosphophorlyation by using mutant 'securin' strains of yeast, and testing how changes in the phosphoregulation of securin affects the synchrony of sister chromatid separation. Their results indicate that interfering with this positive securin-separase-cdc14 loop decreases sister chromatid separation synchrony. This positive feedback can hypothetically generate bistability in the transition to anaphase, causing the cell to make the irreversible decision to separate sister-chromatids.

Relevant Information

  • Cell cycle
    Cell cycle
    The cell cycle, or cell-division cycle, is the series of events that takes place in a cell leading to its division and duplication . In cells without a nucleus , the cell cycle occurs via a process termed binary fission...

  • Mitosis
    Mitosis
    Mitosis is the process by which a eukaryotic cell separates the chromosomes in its cell nucleus into two identical sets, in two separate nuclei. It is generally followed immediately by cytokinesis, which divides the nuclei, cytoplasm, organelles and cell membrane into two cells containing roughly...

  • Cell cycle checkpoint
    Cell cycle checkpoint
    Cell cycle checkpoints are control mechanisms that ensure the fidelity of cell division in eukaryotic cells. These checkpoints verify whether the processes at each phase of the cell cycle have been accurately completed before progression into the next phase...

  • Spindle checkpoint
    Spindle checkpoint
    In order to preserve one cell's identity and its proper functioning, it is necessary to maintain constant the appropriate number of chromosomes after each cell division...

  • Cell cycle mathematical model
  • Cdc25
    Cdc25
    Cdc25 is a dual-specificity phosphatase first isolated from the yeast Schizosaccharomyces pombe as a cell cycle defective mutant. As with other cell cycle proteins such as Cdc2 and Cdc4, the "cdc" in its name refers to "cell division cycle".Dual-specificity phosphatases are considered a sub-class...

  • Cell biology
    Cell biology
    Cell biology is a scientific discipline that studies cells – their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division and death. This is done both on a microscopic and molecular level...


External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK