Vyacheslav Ivanovich Lebedev
Encyclopedia
Vyacheslav Ivanovich Lebedev (January 27, 1930 – March 22, 2010) was a Soviet and Russian
mathematician
, known for his work on numerical analysis.
Lebedev was a Ph.D. student of Sobolev. He worked at the Kurchatov Institute
and Soviet/Russian Academy of Sciences
, and taught students at the Moscow State University
and Moscow Institute of Physics and Technology. He authored over hundred papers and several books, most noticeably, "Numerical methods in the theory of neutron transport" jointly with Gury Marchuk
and "Functional Analysis in Computational Mathematics," based on his lectures. He graduated over 15 Ph.D.'s. Lebedev quadrature has become one of the popular methods of integration on a sphere.
VIL was a recipient of the Soviet State award in 1986-7 and Chebyshev Gold medal in 2002-3.
VIL worked in many areas of computational and applied mathematics, ranging from software development for nuclear reactors modeling to approximation by polynomials, from quadrature on a sphere to numerical solution of stiff systems of PDEs, from domain decomposition and Poincaré–Steklov operators
to finite-difference methods
, from iterative solvers to parallel computing. He even contributed to finding roots of cubic equation, see Soviet J. Numer. Anal. Math. Modelling 6 (1991), no. 4, 315—324.
Russia
Russia or , officially known as both Russia and the Russian Federation , is a country in northern Eurasia. It is a federal semi-presidential republic, comprising 83 federal subjects...
mathematician
Mathematician
A mathematician is a person whose primary area of study is the field of mathematics. Mathematicians are concerned with quantity, structure, space, and change....
, known for his work on numerical analysis.
Lebedev was a Ph.D. student of Sobolev. He worked at the Kurchatov Institute
Kurchatov Institute
The Kurchatov Institute is Russia's leading research and development institution in the field of nuclear energy. In the Soviet Union it was known as I. V. Kurchatov Institute of Atomic Energy , abbreviated KIAE . It is named after Igor Kurchatov....
and Soviet/Russian Academy of Sciences
Russian Academy of Sciences
The Russian Academy of Sciences consists of the national academy of Russia and a network of scientific research institutes from across the Russian Federation as well as auxiliary scientific and social units like libraries, publishers and hospitals....
, and taught students at the Moscow State University
Moscow State University
Lomonosov Moscow State University , previously known as Lomonosov University or MSU , is the largest university in Russia. Founded in 1755, it also claims to be one of the oldest university in Russia and to have the tallest educational building in the world. Its current rector is Viktor Sadovnichiy...
and Moscow Institute of Physics and Technology. He authored over hundred papers and several books, most noticeably, "Numerical methods in the theory of neutron transport" jointly with Gury Marchuk
Gury Marchuk
Gury Ivanovich Marchuk is a prominent Soviet/Russian scientist in the fields of computational mathematics, and physics of atmosphere. Academician ; the President of the USSR Academy of Sciences in 1986–1991...
and "Functional Analysis in Computational Mathematics," based on his lectures. He graduated over 15 Ph.D.'s. Lebedev quadrature has become one of the popular methods of integration on a sphere.
VIL was a recipient of the Soviet State award in 1986-7 and Chebyshev Gold medal in 2002-3.
VIL worked in many areas of computational and applied mathematics, ranging from software development for nuclear reactors modeling to approximation by polynomials, from quadrature on a sphere to numerical solution of stiff systems of PDEs, from domain decomposition and Poincaré–Steklov operators
Poincaré–Steklov operator
In mathematics, a Poincaré–Steklov operator maps the values of one boundary condition of the solution of an elliptic partial differential equation in a domain to the values of another boundary condition. Usually, either of the boundary conditions determines the solution...
to finite-difference methods
Finite difference method
In mathematics, finite-difference methods are numerical methods for approximating the solutions to differential equations using finite difference equations to approximate derivatives.- Derivation from Taylor's polynomial :...
, from iterative solvers to parallel computing. He even contributed to finding roots of cubic equation, see Soviet J. Numer. Anal. Math. Modelling 6 (1991), no. 4, 315—324.
External links
- from RAS.RU (In Russian)
- from KIAE.RU (In Russian)