Trivial semigroup
Encyclopedia
In mathematics
, a trivial semigroup (a semigroup with one element) is a semigroup
for which the cardinality of the underlying set is one. The number of distinct nonisomorphic semigroups with one element is one. If S = { a } is a semigroup with one element then the Cayley table
of S is as given below:
The only element in S is the zero element 0 of S and is also the identity element
1 of S. However not all semigroup theorists consider the unique element in a semigroup with one element as the zero element of the semigroup. They define zero elements only in semigroups having at least two elements.
In spite of its extreme triviality, the semigroup with one element is important in many situations. It is the starting point for understanding the structure
of semigroups. It serves as a counterexample
in illuminating many situations. For example, the semigroup with one element is the only semigroup in which 0 = 1, that is, the zero element and the identity element are equal.
Further, if S is a semigroup with one element, the semigroup obtained by adjoining an identity element to S is isomorphic to the semigroup obtained by adjoining a zero element to S.
The semigroup with one element is also a group
.
In the language of category theory
, any semigroup with one element is a terminal object in the category of semigroups.
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...
, a trivial semigroup (a semigroup with one element) is a semigroup
Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup generalizes a monoid in that there might not exist an identity element...
for which the cardinality of the underlying set is one. The number of distinct nonisomorphic semigroups with one element is one. If S = { a } is a semigroup with one element then the Cayley table
Cayley table
A Cayley table, after the 19th century British mathematician Arthur Cayley, describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table reminiscent of an addition or multiplication table...
of S is as given below:
a | |
---|---|
a | a |
The only element in S is the zero element 0 of S and is also the identity element
Identity element
In mathematics, an identity element is a special type of element of a set with respect to a binary operation on that set. It leaves other elements unchanged when combined with them...
1 of S. However not all semigroup theorists consider the unique element in a semigroup with one element as the zero element of the semigroup. They define zero elements only in semigroups having at least two elements.
In spite of its extreme triviality, the semigroup with one element is important in many situations. It is the starting point for understanding the structure
Structure
Structure is a fundamental, tangible or intangible notion referring to the recognition, observation, nature, and permanence of patterns and relationships of entities. This notion may itself be an object, such as a built structure, or an attribute, such as the structure of society...
of semigroups. It serves as a counterexample
Counterexample
In logic, and especially in its applications to mathematics and philosophy, a counterexample is an exception to a proposed general rule. For example, consider the proposition "all students are lazy"....
in illuminating many situations. For example, the semigroup with one element is the only semigroup in which 0 = 1, that is, the zero element and the identity element are equal.
Further, if S is a semigroup with one element, the semigroup obtained by adjoining an identity element to S is isomorphic to the semigroup obtained by adjoining a zero element to S.
The semigroup with one element is also a group
Group (mathematics)
In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines any two of its elements to form a third element. To qualify as a group, the set and the operation must satisfy a few conditions called group axioms, namely closure, associativity, identity...
.
In the language of category theory
Category theory
Category theory is an area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of objects and arrows , where these collections satisfy certain basic conditions...
, any semigroup with one element is a terminal object in the category of semigroups.
See also
- Field with one elementField with one elementIn mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French-English pun, Fun...
- Empty semigroupEmpty semigroupIn mathematics, a semigroup with no elements is a semigroup in which the underlying set is the empty set. Many authors do not admit the existence of such a semigroup. For them a semigroup is by definition a non-empty set together with an associative binary operation. However not all authors insist...
- Semigroup with two elementsSemigroup with two elementsIn mathematics, a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five distinct nonisomorphic semigroups having two elements:* O2, the null semigroup of order two,...
- Special classes of semigroupsSpecial classes of semigroupsIn mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions...