Relativistic plasma
Encyclopedia
Relativistic plasmas in physics
Physics
Physics is a natural science that involves the study of matter and its motion through spacetime, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic...

 are plasma
Plasma (physics)
In physics and chemistry, plasma is a state of matter similar to gas in which a certain portion of the particles are ionized. Heating a gas may ionize its molecules or atoms , thus turning it into a plasma, which contains charged particles: positive ions and negative electrons or ions...

s for which relativistic
Special relativity
Special relativity is the physical theory of measurement in an inertial frame of reference proposed in 1905 by Albert Einstein in the paper "On the Electrodynamics of Moving Bodies".It generalizes Galileo's...

 corrections to a particle's mass and velocity are important. Such corrections typically become important when a significant number of electron
Electron
The electron is a subatomic particle with a negative elementary electric charge. It has no known components or substructure; in other words, it is generally thought to be an elementary particle. An electron has a mass that is approximately 1/1836 that of the proton...

s reach speeds greater than 0.86c
Speed of light
The speed of light in vacuum, usually denoted by c, is a physical constant important in many areas of physics. Its value is 299,792,458 metres per second, a figure that is exact since the length of the metre is defined from this constant and the international standard for time...

 (Lorentz factor
Lorentz transformation
In physics, the Lorentz transformation or Lorentz-Fitzgerald transformation describes how, according to the theory of special relativity, two observers' varying measurements of space and time can be converted into each other's frames of reference. It is named after the Dutch physicist Hendrik...

 =2).

Such plasmas may be created either by heating a gas to very high temperatures or by the impact of a high-energy particle beam. A relativistic plasma with a thermal distribution function has temperatures greater than around 260 keV, or 3.0 GK (5.5 billion degrees Fahrenheit), where approximately 10% of the electrons have . Since these temperatures are so high, most relativistic plasmas are small and brief, and are often the result of a relativistic beam
Particle accelerator
A particle accelerator is a device that uses electromagnetic fields to propel charged particles to high speeds and to contain them in well-defined beams. An ordinary CRT television set is a simple form of accelerator. There are two basic types: electrostatic and oscillating field accelerators.In...

 impacting some target. (More mundanely, "relativistic plasma" might denote a normal, cold plasma moving at a significant fraction of the speed of light relative to the observer.)

Relativistic plasmas may result when two particle beams collide at speeds comparable to the speed of light, and in the cores of supernovae. Plasmas hot enough for particles other than electrons to be relativistic are even more rare, since other particles are more massive and thus require more energy to accelerate to a significant fraction of the speed of light. (About 10% of protons would have at a temperature of 481 MeV - 5.6 TK.) Still higher energies are necessary to achieve a quark-gluon plasma
Quark-gluon plasma
A quark–gluon plasma or quark soup is a phase of quantum chromodynamics which exists at extremely high temperature and/or density. This phase consists of asymptotically free quarks and gluons, which are several of the basic building blocks of matter...

.

The primary changes in a plasma's behavior as it approaches the relativistic regime is slight modifications to the equations which describe a non-relativistic plasma
Magnetohydrodynamics
Magnetohydrodynamics is an academic discipline which studies the dynamics of electrically conducting fluids. Examples of such fluids include plasmas, liquid metals, and salt water or electrolytes...

 and to collision and interaction cross sections
Cross section (physics)
A cross section is the effective area which governs the probability of some scattering or absorption event. Together with particle density and path length, it can be used to predict the total scattering probability via the Beer-Lambert law....

. The equations may also need modifications to account for pair production
Pair production
Pair production refers to the creation of an elementary particle and its antiparticle, usually from a photon . For example an electron and its antiparticle, the positron, may be created...

 of electron-positron pairs (or other particles at the highest temperatures).

A plasma double layer
Double layer (plasma)
A double layer is a structure in a plasma and consists of two parallel layers with opposite electrical charge. The sheets of charge cause a strong electric field and a correspondingly sharp change in voltage across the double layer. Ions and electrons which enter the double layer are accelerated,...

 with a large potential drop and layer separation, may accelerate electrons to relativistic velocities, and produce synchrotron radiation
Synchrotron radiation
The electromagnetic radiation emitted when charged particles are accelerated radially is called synchrotron radiation. It is produced in synchrotrons using bending magnets, undulators and/or wigglers...

.

Further reading

  • Physics Today Vol 56 No. 3, p. 16 (March 2003).
  • Physics Today Vol 56 No. 6, p. 47 (June 2003).
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK