Multi-carrier code division multiple access
Encyclopedia
Multi-Carrier Code Division Multiple Access (MC-CDMA) is a multiple access scheme used in OFDM-based telecommunication systems, allowing the system to support multiple users at the same time.

MC-CDMA spreads each user symbol in the frequency domain. That is, each user symbol is carried over multiple parallel subcarriers, but it is phase shifted (typically 0 or 180 degrees) according to a code value. The code values differ per subcarrier and per user. The receiver combines all subcarrier signals, by weighing these to compensate varying signal strengths and undo the code shift. The receiver can separate signals of different users, because these have different (e.g. orthogonal) code values.

Since each data symbol occupies a much wider bandwidth (in hertz) than the data rate (in bit/s), a signal-to-noise-plus-interference ratio (if defined as signal power divided by total noise plus interference power in the entire transmission band) of less than 0 dB is feasible.

One way of interpreting MC-CDMA is to regard it as a direct-sequence CDMA signal (DS-CDMA)
which is transmitted after it has been fed through an inverse FFT (Fast Fourier Transform
Fast Fourier transform
A fast Fourier transform is an efficient algorithm to compute the discrete Fourier transform and its inverse. "The FFT has been called the most important numerical algorithm of our lifetime ." There are many distinct FFT algorithms involving a wide range of mathematics, from simple...

)

Rationale

Wireless radio links suffer from frequency-selective channels.
If the signal on one subcarrier experiences an outage, it can
still be reconstructed from the energy received over other subcarriers.

Downlink: MC-CDM

In the downlink (one base station transmitting to one or more terminals), MC-CDMA typically reduces to Multi-Carrier Code Division Multiplexing. All user signals can easily be synchronized, and all signals on one subcarrier experience the same radio channel properties.
In such case a preferred system implementation is to take N user bits (possibly but not necessarily for different destinations), to transform these using a Walsh Hadamard Transform
Hadamard transform
The Hadamard transform is an example of a generalized class of Fourier transforms...

, followed by an I-FFT.

Variants

A number of alternative possibilities exist as to how this frequency domain spreading can take place, such as by using a long PN code and multiplying each data symbol, di, on a subcarrier by a chip from the PN code, ci, or by using short PN codes and spreading each data symbol by an individual PN code — i.e. di is multiplied by each ci and the resulting vector is placed on Nfreq subcarriers, where Nfreq is the PN code length.

Once frequency domain spreading has taken place and the OFDM subcarriers have all been allocated values, OFDM modulation then takes place using the IFFT
Fast Fourier transform
A fast Fourier transform is an efficient algorithm to compute the discrete Fourier transform and its inverse. "The FFT has been called the most important numerical algorithm of our lifetime ." There are many distinct FFT algorithms involving a wide range of mathematics, from simple...

 to produce an OFDM symbol; the OFDM guard interval is then added; and if transmission is in the downlink direction each of these resulting symbols are added together prior to transmission.

An alternative form of multi-carrier CDMA, called MC-DS-CDMA or MC/DS-CDMA, performs spreading in the time domain, rather than in the frequency domain in the case of MC-CDMA — for the special case where there is only one carrier, this reverts to standard DS-CDMA.

For the case of MC-DS-CDMA where OFDM is used as the modulation scheme, the data symbols on the individual subcarriers are spread in time by multiplying the chips on a PN code by the data symbol on the subcarrier. For example, assume the PN code chips consist of {1, -1} and the data symbol on the subcarrier is -j. The symbol being modulated onto that carrier, for symbols 0 and 1, will be -j for symbol 0 and +j for symbol 1.

2-dimensional spreading in both the frequency and time domains is also possible, and a scheme that uses 2-D spreading is VSF-OFCDM (which stands for variable spreading factor orthogonal frequency code-division multiplexing), which NTT DoCoMo
NTT DoCoMo
is the predominant mobile phone operator in Japan. The name is officially an abbreviation of the phrase, "do communications over the mobile network", and is also from a compound word dokomo, meaning "everywhere" in Japanese. Docomo provides phone, video phone , i-mode , and mail services...

 is using for its 4G
4G
In telecommunications, 4G is the fourth generation of cellular wireless standards. It is a successor to the 3G and 2G families of standards. In 2009, the ITU-R organization specified the IMT-Advanced requirements for 4G standards, setting peak speed requirements for 4G service at 100 Mbit/s...

 prototype system.

As an example of how the 2D spreading on VSF-OFCDM works, if you take the first data symbol, d0, and a spreading factor in the time domain, SFtime, of length 4, and a spreading factor in the frequency domain, SFfrequency of 2, then the data symbol, d0, will be multiplied by the length-2 frequency-domain PN codes and placed on subcarriers 0 and 1, and these values on subcarriers 0 and 1 will then be multiplied by the length-4 time-domain PN code and transmitted on OFDM symbols 0, 1, 2 and 3.

NTT DoCoMo
NTT DoCoMo
is the predominant mobile phone operator in Japan. The name is officially an abbreviation of the phrase, "do communications over the mobile network", and is also from a compound word dokomo, meaning "everywhere" in Japanese. Docomo provides phone, video phone , i-mode , and mail services...

 has already achieved 5 Gbit/s transmissions to receivers travelling at 10 km/h using its 4G
4G
In telecommunications, 4G is the fourth generation of cellular wireless standards. It is a successor to the 3G and 2G families of standards. In 2009, the ITU-R organization specified the IMT-Advanced requirements for 4G standards, setting peak speed requirements for 4G service at 100 Mbit/s...

 prototype system in a 100 MHz-wide channel. This 4G
4G
In telecommunications, 4G is the fourth generation of cellular wireless standards. It is a successor to the 3G and 2G families of standards. In 2009, the ITU-R organization specified the IMT-Advanced requirements for 4G standards, setting peak speed requirements for 4G service at 100 Mbit/s...

 prototype system also uses a 12x12 antenna MIMO
MIMO
In radio, multiple-input and multiple-output, or MIMO , is the use of multiple antennas at both the transmitter and receiver to improve communication performance. It is one of several forms of smart antenna technology...

 configuration, and turbo coding for error correction coding.

Summary

1. OFDMA
OFDMA
Orthogonal Frequency-Division Multiple Access is a multi-user version of the popular Orthogonal frequency-division multiplexing digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users as shown in the illustration below...

 with frequency spreading (MC-CDMA
MC-CDMA
MC-CDMA may stand for:* Multi-carrier code division multiple access, a multiple access technology used in telecommunication systems based on OFDM....

)

2. OFDMA
OFDMA
Orthogonal Frequency-Division Multiple Access is a multi-user version of the popular Orthogonal frequency-division multiplexing digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users as shown in the illustration below...

 with time spreading (MC-DS-CDMA and MT-CDMA)

3. OFDMA
OFDMA
Orthogonal Frequency-Division Multiple Access is a multi-user version of the popular Orthogonal frequency-division multiplexing digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users as shown in the illustration below...

 with both time and frequency spreading (Orthogonal Frequency Code Division Multiple Access(OFCDMA))

Literature

  • N. Yee, J.P.M.G. Linnartz and G. Fettweis, "Multi-Carrier CDMA in indoor wireless Radio Networks", IEEE Personal Indoor and Mobile Radio Communications (PIMRC) Int. Conference, Sept. 1993, Yokohama, Japan, pp. 109–113 (1993: first paper proposing the system and the name MC-CDMA)

  • K. Fazel and L. Papke, "On the performance of convolutionally-coded CDMA/OFDM for mobile communication system", IEEE Personal Indoor and Mobile Radio Communications (PIMRC) Int. Conference, Sept. 1993, Yokohama, Japan, pp. 468–472

  • A. Chouly, A. Brajal, and S. Jourdan, "Orthogonal multicarrier techniques applied to direct sequence spread spectrum CDMA systems," in Proceedings of Global Telecommunications Conference (GLOBECOM'93), pp. 1723–1728, Houston, Tex, USA, November 1993.

  • N.Yee, J.P.M.G. Linnartz and G. Fettweis, "Multi-Carrier-CDMA in indoor wireless networks", IEICE Transaction on Communications, Japan, Vol. E77-B, No. 7, July 1994, pp. 900–904.

  • J.P.M.G. Linnartz, "Performance Analysis of Synchronous MC-CDMA in mobile Rayleigh channels with both Delay and Doppler spreads", IEEE VT, Vol. 50, No. 6, Nov. 2001, pp 1375–1387. PDF

  • K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems: From OFDM and MC-CDMA to LTE and WiMAX, 2nd Edition, John Wiley & Sons, 2008, ISBN 978-0-470-99821-2.




See also

  • OFDMA
    OFDMA
    Orthogonal Frequency-Division Multiple Access is a multi-user version of the popular Orthogonal frequency-division multiplexing digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users as shown in the illustration below...

    , an alternative multiple access scheme for OFDM systems, where the signals of different users are separated in the frequency domain
    Frequency domain
    In electronics, control systems engineering, and statistics, frequency domain is a term used to describe the domain for analysis of mathematical functions or signals with respect to frequency, rather than time....

    by allocating different sub-carriers to different users.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK