Magnetopause
Encyclopedia
The magnetopause is the abrupt boundary between a magnetosphere
Magnetosphere
A magnetosphere is formed when a stream of charged particles, such as the solar wind, interacts with and is deflected by the intrinsic magnetic field of a planet or similar body. Earth is surrounded by a magnetosphere, as are the other planets with intrinsic magnetic fields: Mercury, Jupiter,...

 and the surrounding plasma
Plasma (physics)
In physics and chemistry, plasma is a state of matter similar to gas in which a certain portion of the particles are ionized. Heating a gas may ionize its molecules or atoms , thus turning it into a plasma, which contains charged particles: positive ions and negative electrons or ions...

. For planetary science
Planetary science
Planetary science is the scientific study of planets , moons, and planetary systems, in particular those of the Solar System and the processes that form them. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation,...

, the magnetopause is the boundary between the planet’s magnetic field and the solar wind
Solar wind
The solar wind is a stream of charged particles ejected from the upper atmosphere of the Sun. It mostly consists of electrons and protons with energies usually between 1.5 and 10 keV. The stream of particles varies in temperature and speed over time...

. The location of the magnetopause is determined by the balance between the pressure of the planetary magnetic field and the dynamic pressure of the solar wind. As the solar wind pressure increases and decreases, the magnetopause moves inward and outward in response. Waves (ripples and flapping motion) along the magnetopause move in the direction of the solar wind flow in response to small scale variations in the solar wind pressure and to Kelvin-Helmholtz instability
Kelvin-Helmholtz instability
The Kelvin–Helmholtz instability, after Lord Kelvin and Hermann von Helmholtz, can occur when velocity shear is present within a continuous fluid, or when there is sufficient velocity difference across the interface between two fluids. One example is wind blowing over a water surface, where the...

.

The solar wind is supersonic and passes through a bow shock
Bow shock
A bow shock is the area between a magnetosphere and an ambient medium. For stars, this is typically the boundary between their stellar wind and the interstellar medium....

 where the direction of flow is changed so that most of the solar wind plasma is deflected to either side of the magnetopause, much like water is deflected before the bow of a ship. The zone of shocked solar wind plasma is the magnetosheath
Magnetosheath
The magnetosheath is the region of space between the magnetopause and the bow shock of a planet's magnetosphere. The regularly organized magnetic field generated by the planet becomes weak and irregular in the magnetosheath due to interaction with the incoming solar wind, and is incapable of fully...

. At Earth and all the other planets with intrinsic magnetic fields, some solar wind plasma succeeds in entering and becoming trapped within the magnetosphere. At Earth, the solar wind plasma which enters the magnetosphere forms the plasma sheet. The amount of solar wind plasma and energy which enters the magnetosphere is regulated by the orientation of the interplanetary magnetic field
Interplanetary Magnetic Field
The interplanetary magnetic field is the term for the solar magnetic field carried by the solar wind among the planets of the Solar System....

 which is embedded in the solar wind.

The Sun and other stars with magnetic fields and stellar winds have a solar magnetopause or heliopause where the stellar environment is bounded by the interstellar environment.

Characteristics

Prior to the age of space exploration, interplanetary space was considered to be a vacuum. The coincidence of the Carrington super flare and the super geomagnetic event of 1859 was evidence that plasma was ejected from the Sun during a flare event. Chapman and Ferraro proposed that a plasma was emitted by the Sun in a burst as part of a flare event which disturbed the planet's magnetic field in a manner known as a geomagnetic storm. The collision frequency of particles in the plasma in the interplanetary medium is very low and the electrical conductivity is so high that it could be approximated by as an infinite conductor. A magnetic field in a vacuum cannot penetrate a volume with infinite conductivity. Chapman and Bartels (1940) illustrated this concept by postulating a plate with infinite conductivity placed on the dayside of a planet’s dipole as shown in the schematic. The field lines on the dayside are bent. At low latitudes, the magnetic field lines are pushed inward. At high latitudes, the magnetic field lines are push backwards and over the polar regions. The boundary between the region dominated by the planet’s magnetic field (i.e., the magnetosphere
Magnetosphere
A magnetosphere is formed when a stream of charged particles, such as the solar wind, interacts with and is deflected by the intrinsic magnetic field of a planet or similar body. Earth is surrounded by a magnetosphere, as are the other planets with intrinsic magnetic fields: Mercury, Jupiter,...

) and the plasma in the interplanetary medium is the magnetopause. The configuration equivalent to a flat, infinitely conductive plate is achieved by placing an image dipole (green arrow at left of schematic) at twice the distance from the planet’s dipole to the magnetopause along the planet-Sun line. Since the solar wind is continuously flowing outward, the magnetopause above, below and to the sides of the planet are swept backward into the geomagnetic tail as shown in the artist’s concept. The region (shown in pink in the schematic) which separates field lines from the planet which pushed inward from those which are pushed backward over the poles is an area of weak magnetic field or day-side cusp. Solar wind particles can enter the planet’s magnetosphere through the cusp region. Because the solar wind exists are all time and not just times of solar flares, the magnetopause is a permanent feature of the space near any planet with a magnetic field.

The magnetic field lines of the planet’s magnetic field are not stationary. They are continuously joining or merging with magnetic field lines of the interplanetary magnetic field. The joined field lines are swept back over the poles into the planetary magnetic tail. In the tail, the field lines from the planet’s magnetic field are re-joined and start moving toward night-side of the planet. The physics of this process was first explain by Dungey (1961) ..

If one assumed that magnetopause was just a boundary between a magnetic field in a vacuum and a plasma with a weak magnetic field embedded in it, then the magnetopause would be defined by electrons and ions penetrating one gyroradius into the magnetic field domain. Since the gyro-motion of electrons and ions is in opposite directions, an electric current flows along the boundary. The actual magnetopause is much more complex.

Estimating the standoff distance to the magnetopause

If the pressure from particles within the magnetosphere is neglected, it is possible to estimate the distance to the part of the magnetosphere that faces the Sun
Sun
The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

. The condition governing this position is that the dynamic ram pressure
Ram pressure
In physics, ram pressure is a pressure exerted on a body which is moving through a fluid medium. It causes a strong drag force to be exerted on the body. It is given by:P= \rho v^2...

 from the solar wind
Solar wind
The solar wind is a stream of charged particles ejected from the upper atmosphere of the Sun. It mostly consists of electrons and protons with energies usually between 1.5 and 10 keV. The stream of particles varies in temperature and speed over time...

 is equal to the magnetic pressure from the Earth
Earth
Earth is the third planet from the Sun, and the densest and fifth-largest of the eight planets in the Solar System. It is also the largest of the Solar System's four terrestrial planets...

's magnetic field
Magnetic field
A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude ; as such it is a vector field.Technically, a magnetic field is a pseudo vector;...

.The reason for the factor of 4 is because the magnetic field strength just inside the magnetopause is twice the dipole value for a planar magnetopause where and are the density
Density
The mass density or density of a material is defined as its mass per unit volume. The symbol most often used for density is ρ . In some cases , density is also defined as its weight per unit volume; although, this quantity is more properly called specific weight...

 and velocity
Velocity
In physics, velocity is speed in a given direction. Speed describes only how fast an object is moving, whereas velocity gives both the speed and direction of the object's motion. To have a constant velocity, an object must have a constant speed and motion in a constant direction. Constant ...

 of the solar wind
Solar wind
The solar wind is a stream of charged particles ejected from the upper atmosphere of the Sun. It mostly consists of electrons and protons with energies usually between 1.5 and 10 keV. The stream of particles varies in temperature and speed over time...

, and
B(r) is the Magnetic field strength of the planet
Magnetic field
A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude ; as such it is a vector field.Technically, a magnetic field is a pseudo vector;...

 in SI
Si
Si, si, or SI may refer to :- Measurement, mathematics and science :* International System of Units , the modern international standard version of the metric system...

 units (B in T
Tesla (unit)
The tesla is the SI derived unit of magnetic field B . One tesla is equal to one weber per square meter, and it was defined in 1960 in honour of the inventor, physicist, and electrical engineer Nikola Tesla...

, μ0 in H/m
Metre
The metre , symbol m, is the base unit of length in the International System of Units . Originally intended to be one ten-millionth of the distance from the Earth's equator to the North Pole , its definition has been periodically refined to reflect growing knowledge of metrology...

)

Since the dipole
Dipole
In physics, there are several kinds of dipoles:*An electric dipole is a separation of positive and negative charges. The simplest example of this is a pair of electric charges of equal magnitude but opposite sign, separated by some distance. A permanent electric dipole is called an electret.*A...

 magnetic field strength varies with distance as the magnetic field strength can be written as ..
Solving this equation for r leads to an estimate of the distance

The distance from Earth to the subsolar magnetopause varies over time due to solar activity, but typical distances range from 6 - 15 R. Emperical models using real-time solar wind
Solar wind
The solar wind is a stream of charged particles ejected from the upper atmosphere of the Sun. It mostly consists of electrons and protons with energies usually between 1.5 and 10 keV. The stream of particles varies in temperature and speed over time...

 data can provide a real-time estimate of the magnetopause location. A bow shock
Bow shock
A bow shock is the area between a magnetosphere and an ambient medium. For stars, this is typically the boundary between their stellar wind and the interstellar medium....

 stands upstream from the magnetopause. It serves to decelerate and deflect the solar wind flow before it reaches the magnetopause

Solar System magnetopauses

Overview of the Solar System magnetopauses
Planet Number Magnetic moment compared to Earth's magnetic moment (7.906 x 1031 gauss m-3) Magnetopause distance typical distance between magnetopause and magnetosphere in planet radii Observed size of the magnetosphere
Magnetosphere
A magnetosphere is formed when a stream of charged particles, such as the solar wind, interacts with and is deflected by the intrinsic magnetic field of a planet or similar body. Earth is surrounded by a magnetosphere, as are the other planets with intrinsic magnetic fields: Mercury, Jupiter,...

in planet radii
variance of magnetosphere
Magnetosphere
A magnetosphere is formed when a stream of charged particles, such as the solar wind, interacts with and is deflected by the intrinsic magnetic field of a planet or similar body. Earth is surrounded by a magnetosphere, as are the other planets with intrinsic magnetic fields: Mercury, Jupiter,...

in planet radii, the magnetosphere
Magnetosphere
A magnetosphere is formed when a stream of charged particles, such as the solar wind, interacts with and is deflected by the intrinsic magnetic field of a planet or similar body. Earth is surrounded by a magnetosphere, as are the other planets with intrinsic magnetic fields: Mercury, Jupiter,...

 varies mainly in response to solar wind dynamic pressure and interplanetary magnetic field orientation
Mercury
Mercury (planet)
Mercury is the innermost and smallest planet in the Solar System, orbiting the Sun once every 87.969 Earth days. The orbit of Mercury has the highest eccentricity of all the Solar System planets, and it has the smallest axial tilt. It completes three rotations about its axis for every two orbits...

 
1 0.0004 1.5 1.4 0
Venus
Venus
Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. The planet is named after Venus, the Roman goddess of love and beauty. After the Moon, it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6, bright enough to cast shadows...

 
2 0 0 0 0
Earth
Earth
Earth is the third planet from the Sun, and the densest and fifth-largest of the eight planets in the Solar System. It is also the largest of the Solar System's four terrestrial planets...

3 1 10 10 2
Mars
Mars
Mars is the fourth planet from the Sun in the Solar System. The planet is named after the Roman god of war, Mars. It is often described as the "Red Planet", as the iron oxide prevalent on its surface gives it a reddish appearance...

4 0 0 0 0
Jupiter
Jupiter
Jupiter is the fifth planet from the Sun and the largest planet within the Solar System. It is a gas giant with mass one-thousandth that of the Sun but is two and a half times the mass of all the other planets in our Solar System combined. Jupiter is classified as a gas giant along with Saturn,...

 
5 20000 42 75 25
Saturn
Saturn
Saturn is the sixth planet from the Sun and the second largest planet in the Solar System, after Jupiter. Saturn is named after the Roman god Saturn, equated to the Greek Cronus , the Babylonian Ninurta and the Hindu Shani. Saturn's astronomical symbol represents the Roman god's sickle.Saturn,...

 
6 600 19 19 3
Uranus
Uranus
Uranus is the seventh planet from the Sun. It has the third-largest planetary radius and fourth-largest planetary mass in the Solar System. It is named after the ancient Greek deity of the sky Uranus , the father of Cronus and grandfather of Zeus...

7 50 25 18 0
Neptune
Neptune
Neptune is the eighth and farthest planet from the Sun in the Solar System. Named for the Roman god of the sea, it is the fourth-largest planet by diameter and the third largest by mass. Neptune is 17 times the mass of Earth and is slightly more massive than its near-twin Uranus, which is 15 times...

8 25 24 24.5 1.5


Research on the magnetopause is conducted using the LMN coordinate system (which is set of axes like XYZ). N points normal to the magnetopause outward to the magnetosheath, L lies along the projection of the dipole axis onto the magnetopause (positive northward), and M completes the triad by pointing dawnward.
Venus and Mars do not have a planetary magnetic field and do not have a magnetopause. The solar wind interacts with the planet’s atmosphere and a void is created behind the planet. In the case of the Earth’s moon and other bodies without a magnetic field or atmosphere, the body’s surface interacts with the solar wind and a void is created behind the body.

See also

  • Heliopause
  • Shock wave
    Shock wave
    A shock wave is a type of propagating disturbance. Like an ordinary wave, it carries energy and can propagate through a medium or in some cases in the absence of a material medium, through a field such as the electromagnetic field...

  • Solar system
    Solar System
    The Solar System consists of the Sun and the astronomical objects gravitationally bound in orbit around it, all of which formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. The vast majority of the system's mass is in the Sun...

  • For applications to spacecraft propulsion
    Spacecraft propulsion
    Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. However, most spacecraft today are propelled by forcing a gas from the...

    , see magnetic sail
    Magnetic sail
    A magnetic sail or magsail is a proposed method of spacecraft propulsion which would use a static magnetic field to deflect charged particles radiated by the Sun as a plasma wind, and thus impart momentum to accelerate the spacecraft...

    .
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK