Introduction to Mathematical Philosophy
Encyclopedia
Introduction to Mathematical Philosophy is a book by Bertrand Russell
, published in 1919, written in part to exposit in a less technical way the main ideas of his and Whitehead
's Principia Mathematica
(1910–1913), including the theory of descriptions
.
Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, OM, FRS was a British philosopher, logician, mathematician, historian, and social critic. At various points in his life he considered himself a liberal, a socialist, and a pacifist, but he also admitted that he had never been any of these things...
, published in 1919, written in part to exposit in a less technical way the main ideas of his and Whitehead
Alfred North Whitehead
Alfred North Whitehead, OM FRS was an English mathematician who became a philosopher. He wrote on algebra, logic, foundations of mathematics, philosophy of science, physics, metaphysics, and education...
's Principia Mathematica
Principia Mathematica
The Principia Mathematica is a three-volume work on the foundations of mathematics, written by Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913...
(1910–1913), including the theory of descriptions
Theory of descriptions
The theory of descriptions is the philosopher Bertrand Russell's most significant contribution to the philosophy of language. It is also known as Russell's Theory of Descriptions...
.
Mathematics and logic, historically speaking, have been entirely distinct studies. Mathematics has been connected with science, logic with Greek. But both have developed in modern times: logic has become more mathematical and mathematics has become more logical. The consequence is that it has now become wholly impossible to draw a line between the two; in fact, the two are one. They differ as boy and man: logic is the youth of mathematics and mathematics is the manhood of logic. This view is resented by logicians who, having spent their time in the study of classical texts, are incapable of following a piece of symbolic reasoning, and by mathematicians who have learnt a technique without troubling to inquire into its meaning or justification. Both types are now fortunately growing rarer. So much of modern mathematical work is obviously on the border-line of logic, so much of modern logic is symbolic and formal, that the very close relationship of logic and mathematics has become obvious to every instructed student. The proof of their identity is, of course, a matter of detail: starting with premises which would be universally admitted to belong to logic, and arriving by deduction at results which as obviously belong to mathematics, we find that there is no point at which a sharp line can be drawn, with logic to the left and mathematics to the right. If there are still those who do not admit the identity of logic and mathematics, we may challenge them to indicate at what point, in the successive definitions and deductions of Principia Mathematica, they consider that logic ends and mathematics begins. It will then be obvious that any answer must be quite arbitrary. (Russell 1919, 194–195).
See also
- Foundations of mathematicsFoundations of mathematicsFoundations of mathematics is a term sometimes used for certain fields of mathematics, such as mathematical logic, axiomatic set theory, proof theory, model theory, type theory and recursion theory...
- Philosophy of mathematicsPhilosophy of mathematicsThe philosophy of mathematics is the branch of philosophy that studies the philosophical assumptions, foundations, and implications of mathematics. The aim of the philosophy of mathematics is to provide an account of the nature and methodology of mathematics and to understand the place of...
- Introduction to Mathematical Philosophy (free online version created by Kevin C. Klement)
- Introduction to Mathematical Philosophy at the Internet Archive