Geometric progression
Overview
 
In mathematics
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...

, a geometric progression, also known as a geometric sequence, is a sequence
Sequence
In mathematics, a sequence is an ordered list of objects . Like a set, it contains members , and the number of terms is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence...

 of number
Number
A number is a mathematical object used to count and measure. In mathematics, the definition of number has been extended over the years to include such numbers as zero, negative numbers, rational numbers, irrational numbers, and complex numbers....

s where each term after the first is found by multiplying the previous one by a fixed non-zero number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with common ratio 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with common ratio 1/2. The sum
SUM
SUM can refer to:* The State University of Management* Soccer United Marketing* Society for the Establishment of Useful Manufactures* StartUp-Manager* Software User’s Manual,as from DOD-STD-2 167A, and MIL-STD-498...

 of the terms of a geometric progression is known as a geometric series.

Thus, the general form of a geometric sequence is


and that of a geometric series is


where r ≠ 0 is the common ratio and a is a scale factor
Scale factor
A scale factor is a number which scales, or multiplies, some quantity. In the equation y=Cx, C is the scale factor for x. C is also the coefficient of x, and may be called the constant of proportionality of y to x...

, equal to the sequence's start value.
The n-th term of a geometric sequence with initial value a and common ratio r is given by

Such a geometric sequence also follows the recursive relation for every integer

Generally, to check whether a given sequence is geometric, one simply checks whether successive entries in the sequence all have the same ratio

The common ratio of a geometric series may be negative, resulting in an alternating sequence, with numbers switching from positive to negative and back.
 
x
OK