Gaussian process emulator
Encyclopedia
In statistics
Statistics
Statistics is the study of the collection, organization, analysis, and interpretation of data. It deals with all aspects of this, including the planning of data collection in terms of the design of surveys and experiments....

, Gaussian process emulator is one name for a general type of statistical model
Statistical model
A statistical model is a formalization of relationships between variables in the form of mathematical equations. A statistical model describes how one or more random variables are related to one or more random variables. The model is statistical as the variables are not deterministically but...

 that has been used in contexts where the problem is to make maximum use of the outputs of a complicated (often non-random) computer-based simulation model. Each run of the simulation model is computationally expensive and each run is based on many different controlling inputs. The variation of the outputs of the simulation model is expected to vary reasonably smoothly with the inputs, but in an unknown way.

The overall analysis involves two models: the simulation model, or "simulator", and the statistical model, or "emulator", which notionally emulates the unknown outputs from the simulator.

The Gaussian process emulator model treats the problem from the viewpoint of Bayesian statistics
Bayesian statistics
Bayesian statistics is that subset of the entire field of statistics in which the evidence about the true state of the world is expressed in terms of degrees of belief or, more specifically, Bayesian probabilities...

. In this approach, even though the output of the simulation model is fixed for any given set of inputs, the actual outputs are unknown unless the computer model is run and hence can be made the subject of a Bayesian analysis. The main element of the Gaussian process emulator model is that it models the outputs as a Gaussian process
Gaussian process
In probability theory and statistics, a Gaussian process is a stochastic process whose realisations consist of random values associated with every point in a range of times such that each such random variable has a normal distribution...

on a space that is defined by the model inputs. The model includes a description of the correlation or covariance of the outputs, which enables the model to encompass the idea that differences in the output will be small if there are only small differences in the inputs.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK