Embedding
Overview
In mathematics
, an embedding (or imbedding) is one instance of some mathematical structure
contained within another instance, such as a group
that is a subgroup
.
When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map . The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances.
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...
, an embedding (or imbedding) is one instance of some mathematical structure
Mathematical structure
In mathematics, a structure on a set, or more generally a type, consists of additional mathematical objects that in some manner attach to the set, making it easier to visualize or work with, or endowing the collection with meaning or significance....
contained within another instance, such as a group
Group (mathematics)
In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines any two of its elements to form a third element. To qualify as a group, the set and the operation must satisfy a few conditions called group axioms, namely closure, associativity, identity...
that is a subgroup
Subgroup
In group theory, given a group G under a binary operation *, a subset H of G is called a subgroup of G if H also forms a group under the operation *. More precisely, H is a subgroup of G if the restriction of * to H x H is a group operation on H...
.
When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map . The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances.
Unanswered Questions