Ecological stability
Encyclopedia
Ecological stability can refer to types of stability in a continuum ranging from resilience
Resilience (ecology)
In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and recovering quickly. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities...

 (returning quickly to a previous state) to constancy to persistence. The precise definition depends on the ecosystem
Ecosystem
An ecosystem is a biological environment consisting of all the organisms living in a particular area, as well as all the nonliving , physical components of the environment with which the organisms interact, such as air, soil, water and sunlight....

 in question, the variable or variables of interest, and the overall context. In the context of conservation ecology
Conservation biology
Conservation biology is the scientific study of the nature and status of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction...

, stable population
Population
A population is all the organisms that both belong to the same group or species and live in the same geographical area. The area that is used to define a sexual population is such that inter-breeding is possible between any pair within the area and more probable than cross-breeding with individuals...

s are often defined as ones that do not go extinct. Researchers applying mathematical model
Mathematical model
A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used not only in the natural sciences and engineering disciplines A mathematical model is a...

s from system dynamics
Dynamics (mechanics)
In the field of physics, the study of the causes of motion and changes in motion is dynamics. In other words the study of forces and why objects are in motion. Dynamics includes the study of the effect of torques on motion...

 usually use Lyapunov stability
Lyapunov stability
Various types of stability may be discussed for the solutions of differential equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Lyapunov...

.

Types of ecological stability

Local stability indicates that a system is stable over small short-lived disturbances, while global stability indicates a system highly resistant to change in species composition and/or food web dynamics.

Constancy and persistence

Observational studies of ecosystems use constancy to describe living systems that can remain unchanged.

Resistance and inertia (persistence)

Resistance and inertia deal with a system's inherent response to some perturbation.

A perturbation is any externally imposed change in conditions, usually happening in a short time period. Resistance is a measure of how little the variable of interest changes in response to external pressures. Inertia (or persistence) implies that the living system is able to resist external fluctuations. In the context of changing ecosystem
Ecosystem
An ecosystem is a biological environment consisting of all the organisms living in a particular area, as well as all the nonliving , physical components of the environment with which the organisms interact, such as air, soil, water and sunlight....

s in post-glacial North America, E.C. Pielou remarked at the outset of her overview,
"It obviously takes considerable time for mature vegetation to become established on newly exposed ice scoured rocks or glacial till...it also takes considerable time for whole ecosystems to change, with their numerous interdependent plant species, the habitats these create, and the animals that live in the habitats. Therefore, climatically caused fluctuations in ecological communities are a damped, smoothed-out version of the climatic fluctuations that cause them."

Resilience, elasticity and amplitude

Resilience
Resilience (ecology)
In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and recovering quickly. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities...

is the tendency of a system to return to a previous state after a perturbation. Elasticity and amplitude are measures of resilience. Elasticity is the speed with which a system returns. Amplitude is a measure of how far a system can be moved from the previous state and still return. Ecology borrows the idea of neighborhood stability and a domain of attraction from dynamical system
Dynamical system
A dynamical system is a concept in mathematics where a fixed rule describes the time dependence of a point in a geometrical space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, and the number of fish each springtime in a...

s theory.

See also

  • Dynamic equilibrium
    Dynamic equilibrium
    A dynamic equilibrium exists once a reversible reaction ceases to change its ratio of reactants/products, but substances move between the chemicals at an equal rate, meaning there is no net change. It is a particular example of a system in a steady state...

  • Keystone species
    Keystone species
    A keystone species is a species that has a disproportionately large effect on its environment relative to its abundance. Such species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and...

  • Principle of faunal succession
  • Resilience (ecology)
    Resilience (ecology)
    In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and recovering quickly. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities...

  • Systems analysis
    Systems analysis
    Systems analysis is the study of sets of interacting entities, including computer systems analysis. This field is closely related to requirements analysis or operations research...

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK