ENGIN-X
Encyclopedia
ENGIN-X is the dedicated materials engineering beamline
Beamline
In particle physics, a beamline is the line in a linear accelerator along which a beam of particles travels. It may also refer to the line of travel within a bending section such as a storage ring or cyclotron, or an external beam extracted from a cyclic accelerator.In materials science, physics,...

 at the ISIS neutron source
ISIS neutron source
ISIS is a pulsed neutron and muon source. It is situated at the Rutherford Appleton Laboratory on the Harwell Science and Innovation Campus in Oxfordshire, United Kingdom and is part of the Science and Technology Facilities Council...

 in the UK.

The beamline uses neutron diffraction
Neutron diffraction
Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material: A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of...

 to determine the spacing between layers of atoms in order to measure elastic strain
Strain (materials science)
In continuum mechanics, the infinitesimal strain theory, sometimes called small deformation theory, small displacement theory, or small displacement-gradient theory, deals with infinitesimal deformations of a continuum body...

, and thus residual stress
Residual stress
Residual stresses are stresses that remain after the original cause of the stresses has been removed. They remain along a cross section of the component, even without the external cause. Residual stresses occur for a variety of reasons, including inelastic deformations and heat treatment...

 deep within crystal
Crystal
A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. The scientific study of crystals and crystal formation is known as crystallography...

line materials. In other words, it uses the atomic lattice planes as an 'atomic strain gauge'. Internal and residual stress in materials have a considerable effect on material properties, including fatigue resistance
Fatigue limit
Fatigue limit, endurance limit, and fatigue strength are all expressions used to describe a property of materials: the amplitude of cyclic stress that can be applied to the material without causing fatigue failure. Ferrous alloys and titanium alloys have a distinct limit, an amplitude below which...

, fracture toughness
Toughness
In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing; Material toughness is defined as the amount of energy per volume that a material can absorb before rupturing...

 and strength
Strength of materials
In materials science, the strength of a material is its ability to withstand an applied stress without failure. The applied stress may be tensile, compressive, or shear. Strength of materials is a subject which deals with loads, deformations and the forces acting on a material. A load applied to a...

.

Applications

  • measurement of residual stress in engineering components
  • in situ studies of thermomechanical processing of engineering relevant materials
  • studies of displacive phase transformations under stress, temperature and electric field
  • rock deformation studies
  • non-destructive examination of manufacture processes in historical and archaeological artefacts

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK